Analysis tools that quantify the pressure and potential changes occurring over pressure-driven electrokinetic device elements are necessary for the design of optimal laboratory-on-a-chip devices. In this study, the resistance of a nanofluidic silica channel with negatively charged walls containing a 90^{∘} bend to the electroviscous flow of a potassium chloride salt solution is quantified in terms of two equivalent lengths using numerical analysis. One equivalent length is based on the excess pressure drop and the other on the excess potential rise. Over the entire range of simulations conducted, these equivalent lengths are relatively independent of salt concentration, flow velocity, channel size, and surface charge, remaining within the approximate ranges of 1.3-1.5 for the pressure equivalent length and 0.8-1.05 for the potential equivalent length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.