A first report on the synthesis and biological evaluation of the beta-galactose-conjugated purpurinimides (a class of chlorins containing a six-membered fused imide ring system) as Gal-1 (galectin-1) recognized photosensitizers, prepared from purpurin-N-propargylimide via enyne metathesis, is discussed. On the basis of examination of the available crystal structure of the galectin-1 N-acetyllactose amine complex, it was considered that the chlorin-based photosensitizers could be introduced into a carbohydrate skeleton to expand the repertoire of the galectin-1-specific ligands. Preliminary molecular modeling analysis utilizing the modeled photosensitizers and the available crystal structures of galectin-carbohydrate complexes indicated that addition of the photosensitizer to the carbohydrate moiety at an appropriate position does not interfere with the galectin-carbohydrate recognition. Under similar drug and light doses, compared to the free purpurinimide analogue, the purpurinimides conjugated either with galactose or with lactose (Gal(beta1-4)-Glc) produced a considerable increase in photosensitizing efficacy in vitro. This indicates the possibility for development of a new class of specific photosensitizers for photodynamic therapy (PDT) based on recognition of a cellular receptor.
The in situ conversion of the unstable bacteriochlorophyll a present in Rhodobacter sphaeroides produced highly stable bacteriopurpurin-18 which in a sequence of reactions was converted into a series of alkyl ether analogues of bacteriopurpurin-18-N-alkylimides with long wavelength absorption near 800 nm. The effective photosensitizers were found to localize in mitochondria but did not show any specific displacement of (3)H-PK11195, suggesting that the mitochondrial peripheral benzodiazepine receptor is not the cellular binding site for this class of compounds.
A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important milestone toward improving cancer diagnosis and tumor characterization. More importantly, this paper describes a new family of bifunctional agents that combine two modalities into a single cost-effective "see and treat" approach, namely, a single agent that can be used for contrast agent-enhanced MR imaging followed by targeted photodynamic therapy.
meso-(2-Formylvinyl)octaethylporphyrin on reaction with cyanotrimethylsilane in the presence of various catalysts [copper triflate [Cu(OTf)(2)], indium triflate [In(OTf)(3)], or magnesium bromide diethyl etherate (MgBr(2).Et(2)O)] produced a mixture of the intermediate 3-hydroxy-3-cyanopropenoporphyrin, the corresponding trimethylsilyl ether derivative, and the unexpected propenochlorins. The yields of the reaction products were found to depend on the reaction conditions and the catalysts used. The intermediate porphyrins on treatment with concentrated sulfuric acid yielded the free-base cyanobenzochlorins in major quantity along with several other novel benzochlorins as minor products. Reduction of ethyl-3-hydroxy-1-pentenoate-porphyrin with DIBAL-H/NaBH(4) and subsequent acid treatment provided the corresponding free-base 10(3)-(2-hydroxyethyl)benzochlorin, which upon a sequence of reactions gave a free-base benzochlorin bearing a carboxylic acid functionality in good yield. It was then condensed with a variety of carbohydrates (glucosamine, galactosamine, and lactosamine), and the related conjugates were screened using the galectin-binding-ability assay. Among the carbohydrate conjugates investigated, the lactose and galactose analogues displayed the galectin-binding ability with an enhancement of about 300-400-fold compared to lactose. In preliminary studies, all photosensitizers (with or without carbohydrate moieties) were found to be active in vitro [radiation-induced fibrosarcoma (RIF) tumor cells]. However, the cells incubated with lactose (known to bind to beta-galactoside-recognized proteins) prior to the addition of the photosensitizers containing the beta-galactose moiety (e.g., galactose and lactose) produced a 100% decrease in their photosensitizing efficacy. Under similar experimental conditions, benzochlorin without a beta-galactoside moiety or the related glucose conjugate did not show any inhibition in its photosensitizing efficacy. These results in combination with the galectin-binding data indicate a possible beta-galactoside-recognized protein specificity of the galactose- and lactose-benzochlorin conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.