Hallux valgus is a common condition that results from a complex positional deformity of the first ray. The bunion or medial prominence that results from the lateral deviation and pronation of the hallux is only one component of the 3-dimensional deformity. Hallux valgus can lead to considerable pain and altered joint mechanics. The precise biomechanical etiology remains under debate. Predisposing factors include female sex, age, constricting footwear, and family history. Metatarsus adductus, equinus contracture, hammertoe deformity, and pes planus often coexist with hallux valgus. Nonoperative treatment involves patient education, shoe modifications, toe pads and positioning devices, and activity modifications. Surgery is considered in patients who fail nonoperative treatment with the goal of pain relief, correction of the deformity, improved first ray stability, and improved quality of life. More than 100 different procedures have been described to treat hallux valgus; they include combinations of soft tissue balancing, metatarsal osteotomies, and fusion of either the metatarsophalangeal (MTP) or tarsometatarsal (TMT) joint. The choice of procedures depends on the severity and location of the deformity as well as surgeon preference. Recent advances in operative techniques include minimally invasive surgery and correction of rotational deformity.
Background
Three dimensional printing has greatly advanced over the past decade and has made an impact in several industries. Within the field of orthopaedic surgery, this technology has vastly improved education and advanced patient care by providing innovating tools to complex clinical problems. Anatomic models are frequently used for physician education and preoperative planning, and custom instrumentation can assist in complex surgical cases. Foot and ankle reconstruction is often complicated by multiplanar deformity and bone loss. 3D printing technology offers solutions to these complex cases with customized implants that conform to anatomy and patient specific instrumentation that enables precise deformity correction.
Case presentation
The authors present four cases of complex lower extremity reconstruction involving segmental bone loss and deformity – failed total ankle arthroplasty, talus avascular necrosis, ballistic trauma, and nonunion of a tibial osteotomy. Traditional operative management is challenging in these cases and there are high complication rates. Each case presents a unique clinical scenario for which 3D printing technology allows for innovative solutions.
Conclusions
3D printing is becoming more widespread within orthopaedic surgery. This technology provides surgeons with tools to better tackle some of the more challenging clinical cases especially within the field of foot and ankle surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.