The assumption of multivariate normality underlying the Hotelling T2$T^2$ chart is often violated for process data. The multivariate dependency structure can be separated from marginals with the help of copula theory, which permits to model association structures beyond the covariance matrix. Copula‐based estimation and testing routines have reached maturity regarding a variety of practical applications. We have constructed a rich design matrix for the comparison of the Hotelling T2$T^2$ chart with the copula test by Verdier and the copula test by Vuong, which allows for weighting the observations adaptively. Based on the design matrix, we have conducted a large and computationally intensive simulation study. The results show that the copula test by Verdier performs better than Hotelling T2$T^2$ in a large variety of out‐of‐control cases, whereas the weighted Vuong scheme often fails to provide an improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.