This paper is devoted to the use of the principles of green chemistry in the search for technologies to reduce the chemical footprints of areas. The chemical footprint for mercury and its compounds was taken as an example to study. These chemicals belong to priority pollutants and their ever-increasing amounts in the environment have caused concern around the world, which is reflected in the adoption of the Minamata Convention. The Minamata Convention aims to protect human health and the environment from anthropogenic releases of mercury and mercury compounds. This Convention is an important component of efforts to achieve sustainable, inclusive and resilient human development through SDGs, which were adopted in September 2015 and especially SDG Goal 12: Ensure sustainable consumption and production patterns. Relevancy of this work is due to the need for the adopting of a series of measures to withdraw some mercury-containing goods from the production cycle. Also, one of the most important statements of the Convention is in reference to the issue of mercury contamination when recycling mercury. An important aspect of the work described in this paper is the reduction of mercury pollution from mercury-containing waste products by the development of technology in accordance with the principles of green chemistry. These are energy-efficient and without waste -water discharge technology. The main result of this work is the fundamental research for a transformation of elemental mercury and its compounds into less dangerous forms for the human body and the environment, providing a guaranteed absence of mercury-containing waste in the atmosphere and water systems. Various conditions for reaction of the immobilization of metallic mercury in mercury-containing wastes were investigated and it was established that it proceeded best under the following conditions: Reaction of metallic mercury with elementary sulfur;A ball mill is used as a reactor, which ensures constant updating of the contact area of the phases;For a good dispersion of mercury and for a relatively quick and complete reaction a large excess of sulfur up to 6500 % by stoichiometry (e.g. ratio of mercury:sulfur = 1:1.5 by weight) is necessary;The addition of a very small amount of water also has a positive effect (hydromodulus of Solid:Liquid = 3:1 by weight).
Environmental safety is one of the most important international and national tasks when using chemicals such as mercury, its compounds and mercury containing waste. Mercury (Hg) is a global pollutant. Constant anthropogenic mercury emissions and its presence in food chains affects human and ecosystem health and cause serious concerns. When released into the atmosphere with various emissions, mercury is deposited on the ground or water surface. Due to the global transport of mercury in the environment, its release is possible near sources of pollution, as well as at a remote distance. Keywords: mercury–containing wastes, Minamata Convention, immobilization
Chemical pollution is a problem of global importance. Substances of main concern of chemists worldwide are heavy metals. Heavy metals, such as copper (Cu), nickel (Ni), lead (Pb), vanadium (V), etc., can pose a serious hazard to the environment and human health. Heavy metals are toxic even at very low concentrations. The methodology, described in this paper, considers a migration of chemical pollutants in the environment, in conjunction with the approach used in the Russian regulatory system. Estimations of Maximum Available Concentration overrun show that calculated and experimental data agree to a good extent, particularly for mercury contamination in freshwater bodies. In this study, due to the necessity to obtain data on heavy metals content in water, soil and air, based on available data on emissions, it was decided to use the USEtox model for the simulation of the redistribution of chemicals among such environmental compartments as urban air and air of settlements, fresh waters and coastal sea waters, ocean, agricultural soils and other soils. The USEtox model was chosen because it is available in the free access and its structure can be modified if needed (the model is executed in MS Excel), in addition there is a positive experience in using this model in the combination with Geographic Information Systems (GIS). The algorithm of the calculation of the mass transfer coefficients of chemicals in the hydrosphere and atmosphere, with the use of GIS, is described. This algorithm will provide large amounts of data on the intermedia transfer and transportation of chemical substances with water and air flows and their accumulation in various environmental compartments on a global (the planet Earth) and regional scale for the high-resolution of 0.5°×0.5° grid. In this paper, the case study for the Leningrad Region (the Russian Federation) is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.