The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
Addition of nanoparticulate zero-valent iron (nZVI) to oxygen-containing water results in oxidation of organic compounds. To assess the potential application of nZVI for oxidative transformation of organic contaminants, the conversion of benzoic acid (BA) to p-hydroxybenzoic acid (p-HBA) was used as a probe reaction. When nZVI was added to BA-containing water, an initial pulse of p-HBA was detected during the first 30 min, followed by the slow generation of additional p-HBA over periods of at least 24 h. The yield of p-HBA increased with increasing BA concentration, presumably due to the increasing 'ability of BA to compete with alternate oxidant sinks, such as ferrous iron. At pH 3, maximum yields of p-HBA during the initial phase of the reaction of up to 25% were observed. The initial rate of nZVI-mediated oxidation of BA exhibited a marked reduction at pH values above 3. Despite the decrease in oxidant production rate, p-HBA was observed during the initial reaction phase at pH values up to 8. Competition experiments with probe compounds expected to exhibit different affinities for the nZVI surface (phenol, aniline, o-hydroxybenzoic acid, and synthetic humic acids) indicated relative rates of reaction that were similar to those observed in competition experiments in which hydroxyl radicals were generated in solution. Examination of the oxidizing capacity of a range of Fe0 particles reveals a capacity in all cases to induce oxidative transformation of benzoic acid, but the high surface areas that can be achieved with nanosized particles renders such particles particularly effective oxidants.
Degradation of the carbothiolate herbicide, molinate, has been investigated in oxic solutions containing nanoscale zero-valent iron particles and found to be effectively degraded by an oxidative pathway. Both ferrous iron and superoxide (or, at pH < 4.8, hydroperoxy) radicals appearto be generated on corrosion of the zero-valent iron with resultant production of strongly oxidizing entities capable of degrading the trace contaminant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.