Objective
Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon).
Design
A study employing a non-human primate model
Setting
University of Pittsburgh
Population
45 parous rhesus macaques
Methods
Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months.
Main Outcome Measures
Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol.
Results
Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively).
Conclusions
Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support.
Objective
To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition.
Design
A mechanistic study employing a non-human primate (NHP) model.
Setting
Magee-Womens Research Institute at the University of Pittsburgh.
Population
Parous rhesus macaques, with similar age, weight, parity and POP-Q scores.
Methods
Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls.
Main Outcome Measures
The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly.
Results
Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01).
Conclusion
Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration.
Intracranial pressure and mechanical properties of the ONH influence the risk for experiencing extreme strains in the retrolaminar optic nerve. These extreme strains may activate mechanosensitive cells that induce tissue remodeling and are a risk factor for the development of VIIP. Future studies must also consider variations in ONH anatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.