Layered double hydroxide (LDH) compounds are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations, giving a general layer formula [(M1–x2+M3+x)(OH)2]x+. This positive charge is balanced by anions which are intercalated between the layers. Intercalated molecular water typically provides hydrogen bonding between the brucite layers. In addition to synthetic compounds, some of which have significant industrial applications, more than 40 mineral species conform to this description. Hydrotalcite, Mg6Al2(OH)16[CO3]·4H2O, as the longest-known example, is the archetype of this supergroup of minerals. We review the history, chemistry, crystal structure, polytypic variation and status of all hydrotalcite-supergroup species reported to date. The dominant divalent cations,M2+, that have been reported in hydrotalcite supergroup minerals are Mg, Ca, Mn, Fe, Ni, Cu and Zn; the dominant trivalent cations,M3+, are Al, Mn, Fe, Co and Ni. The most common intercalated anions are (CO3)2–, (SO4)2–and Cl–; and OH–, S2–and [Sb(OH)6]– have also been reported. Some species contain intercalated cationic or neutral complexes such as [Na(H2O)6]+or [MgSO4]0. We define eight groups within the supergroup on the basis of a combination of criteria. These are (1) the hydrotalcite group, withM2+:M3+= 3:1 (layer spacing ∼7.8 Å); (2) the quintinite group, withM2+:M3+= 2:1 (layer spacing ∼7.8 Å); (3) the fougèrite group, withM2+= Fe2+,M3+= Fe3+in a range of ratios, and with O2– replacing OH– in the brucite module to maintain charge balance (layer spacing ∼7.8 Å); (4) the woodwardite group, with variableM2+:M3+and interlayer [SO4]2 –, leading to an expanded layer spacing of ∼8.9 Å; (5) the cualstibite group, with interlayer [Sb(OH)6]– and a layer spacing of ∼9.7 Å; (6) the glaucocerinite group, with interlayer [SO4]2– as in the woodwardite group, and with additional interlayer H2O molecules that further expand the layer spacing to ∼11 Å; (7) the wermlandite group, with a layer spacing of ∼11 Å, in which cationic complexes occur with anions between the brucite-like layers; and (8) the hydrocalumite group, withM2+= Ca2+andM3+= Al, which contains brucite-like layers in which the Ca:Al ratio is 2:1 and the large cation, Ca2+, is coordinated to a seventh ligand of 'interlayer' water.The principal mineral status changes are as follows. (1) The names manasseite, sjögrenite and barbertonite are discredited; these minerals are the 2H polytypes of hydrotalcite, pyroaurite and stichtite, respectively. Cyanophyllite is discredited as it is the 1M polytype of cualstibite. (2) The mineral formerly described as fougèrite has been found to be an intimate intergrowth of two phases with distinct Fe2+:Fe3+ratios. The phase with Fe2+:Fe3+= 2:1 retains the name fougèrite; that with Fe2+:Fe3+= 1:2 is defined as the new species trébeurdenite. (3) The new minerals omsite (IMA2012-025), Ni2Fe3+(OH)6[Sb(OH)6], and mössbauerite (IMA2012-049), Fe3+6O4(OH)8[CO3]·3H2O, which are both in the hydrotalcite supergroup are included in the discussion. (4) Jamborite, carrboydite, zincaluminite, motukoreaite, natroglaucocerinite, brugnatellite and muskoxite are identified as questionable species which need further investigation in order to verify their structure and composition. (5) The ranges of compositions currently ascribed to motukoreaite and muskoxite may each represent more than one species. The same applies to the approved species hydrowoodwardite and hydrocalumite. (6) Several unnamed minerals have been reported which are likely to represent additional species within the supergroup.This report has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B.We also propose a compact notation for identifying synthetic LDH phases, for use by chemists as a preferred alternative to the current widespread misuse of mineral names.
A new scheme of nomenclature for the pyrochlore supergroup, approved by the CNMNC-IMA, is based on the ions at the A, B and Y sites. What has been referred to until now as the pyrochlore group should be referred to as the pyrochlore supergroup, and the subgroups should be changed to groups. Five groups are recommended, based on the atomic proportions of the B atoms Nb, Ta, Sb, Ti, and W. The recommended groups are pyrochlore, microlite, roméite, betafite, and elsmoreite, respectively. The new names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation) of the dominant valence [or H 2 O or □] at the Y site. The second prefix refers to the dominant cation of the dominant valence [or H 2 O or □] at the A site. The prefix "keno-" represents "vacancy". Where the first and second prefixes are equal, then only one prefix is applied. Complete descriptions are missing for the majority of the pyrochlore-supergroup species. Only seven names refer to valid species on the grounds of their complete descriptions: oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite. Fluornatromicrolite is an IMA-approved mineral, but the complete description has not yet been published. The following 20 names refer to minerals that need to be completely described in order to be approved as valid species: hydroxycalciopyrochlore, fluornatropyrochlore, fluorcalciopyrochlore, fluorstrontiopyrochlore, fluorkenopyrochlore, oxynatropyrochlore, oxyplumbopyrochlore, oxyyttropyrochlore-(Y), kenoplumbopyrochlore, fluorcalciomicrolite, oxycalciomicrolite, kenoplumbomicrolite, hydromicrolite, hydrokenomicrolite, oxycalciobetafite, oxyuranobetafite, fluornatroroméite, fluorcalcioroméite, oxycalcioroméite, and oxyplumboroméite. For these, there are only chemical or crystalstructure data. Type specimens need to be defined. Potential candidates for several other species exist, but are not sufficiently well characterized to grant them any official status. Ancient chemical data refer to wet-chemical analyses and commonly represent a mixture of minerals. These data were not used here. All data used represent results of electron-microprobe analyses or were obtained by crystal-structure refinement. We also verified the scarcity of crystal-chemical data in the literature. There are crystalstructure determinations published for only nine pyrochlore-supergroup minerals:
We have synthesized inorganic micron-sized filaments, whose microstucture consists of silica-coated nanometer-sized carbonate crystals, arranged with strong orientational order. They exhibit noncrystallographic, curved, helical morphologies, reminiscent of biological forms. The filaments are similar to supposed cyanobacterial microfossils from the Precambrian Warrawoona chert formation in Western Australia, reputed to be the oldest terrestrial microfossils. Simple organic hydrocarbons, whose sources may also be abiotic and indeed inorganic, readily condense onto these filaments and subsequently polymerize under gentle heating to yield kerogenous products. Our results demonstrate that abiotic and morphologically complex microstructures that are identical to currently accepted biogenic materials can be synthesized inorganically.
We report production of nanostructured magnetic carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp 2 and sp 3 bonded carbon atoms. The material is a form of carbon containing graphitelike sheets with hyperbolic curvature, as proposed for "schwarzite." The foam exhibits ferromagnetic-like behavior up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.
This paper deals with the difficulty of decoding the origins of natural structures through the study of their morphological features. We focus on the case of primitive life detection, where it is clear that the principles of comparative anatomy cannot be applied. A range of inorganic processes are described that result in morphologies emulating biological shapes, with particular emphasis on geochemically plausible processes. In particular, the formation of inorganic biomorphs in alkaline silica-rich environments are described in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.