BackgroundWikipedia is a collaboratively edited encyclopedia. One of the most popular websites on the Internet, it is known to be a frequently used source of health care information by both professionals and the lay public.ObjectiveThis paper quantifies the production and consumption of Wikipedia’s medical content along 4 dimensions. First, we measured the amount of medical content in both articles and bytes and, second, the citations that supported that content. Third, we analyzed the medical readership against that of other health care websites between Wikipedia’s natural language editions and its relationship with disease prevalence. Fourth, we surveyed the quantity/characteristics of Wikipedia’s medical contributors, including year-over-year participation trends and editor demographics.MethodsUsing a well-defined categorization infrastructure, we identified medically pertinent English-language Wikipedia articles and links to their foreign language equivalents. With these, Wikipedia can be queried to produce metadata and full texts for entire article histories. Wikipedia also makes available hourly reports that aggregate reader traffic at per-article granularity. An online survey was used to determine the background of contributors. Standard mining and visualization techniques (eg, aggregation queries, cumulative distribution functions, and/or correlation metrics) were applied to each of these datasets. Analysis focused on year-end 2013, but historical data permitted some longitudinal analysis.ResultsWikipedia’s medical content (at the end of 2013) was made up of more than 155,000 articles and 1 billion bytes of text across more than 255 languages. This content was supported by more than 950,000 references. Content was viewed more than 4.88 billion times in 2013. This makes it one of if not the most viewed medical resource(s) globally. The core editor community numbered less than 300 and declined over the past 5 years. The members of this community were half health care providers and 85.5% (100/117) had a university education.ConclusionsAlthough Wikipedia has a considerable volume of multilingual medical content that is extensively read and well-referenced, the core group of editors that contribute and maintain that content is small and shrinking in size.
Wikipedia is an online encyclopedia which anyone can edit. While most edits are constructive, about 7% are acts of vandalism. Such behavior is characterized by modifications made in bad faith; introducing spam and other inappropriate content. In this work, we present the results of an effort to integrate three of the leading approaches to Wikipedia vandalism detection: a spatiotemporal analysis of metadata (STiki), a reputation-based system (Wiki-Trust), and natural language processing features. The performance of the resulting joint system improves the state-of-the-art from all previous methods and establishes a new baseline for Wikipedia vandalism detection. We examine in detail the contribution of the three approaches, both for the task of discovering fresh vandalism, and for the task of locating vandalism in the complete set of Wikipedia revisions. Authors appear alphabetically. Order does not reflect contribution magnitude.
Reputation management (RM) is employed in distributed and peer-to-peer networks to help users compute a measure of trust in other users based on initial belief, observed behavior, and run-time feedback. These trust values influence how, or with whom, a user will interact. Existing literature on RM focuses primarily on algorithm development, not comparative analysis. To remedy this, the authors propose an evaluation framework based on the trace-simulator paradigm. Trace file generation emulates a variety of network configurations, and particular attention is given to modeling malicious user behavior. Simulation is trace-based and incremental trust calculation techniques are developed to allow experimentation with networks of substantial size. The described framework is available as open source so that researchers can evaluate the effectiveness of other reputation management techniques and/or extend functionality. This chapter reports on the authors’ framework’s design decisions. Their goal being to build a general-purpose simulator, the authors have the opportunity to characterize the breadth of existing RM systems. Further, they demonstrate their tool using two reputation algorithms (EigenTrust and a modified TNA-SL) under varied network conditions. The authors’ analysis permits them to make claims about the algorithms’ comparative merits. They conclude that such systems, assuming their distribution is secure, are highly effective at managing trust, even against adversarial collectives.
Blatantly unproductive edits undermine the quality of the collaboratively-edited encyclopedia, Wikipedia. They not only disseminate dishonest and offensive content, but force editors to waste time undoing such acts of vandalism. Language-processing has been applied to combat these malicious edits, but as with email spam, these filters are evadable and computationally complex. Meanwhile, recent research has shown spatial and temporal features effective in mitigating email spam, while being lightweight and robust.In this paper, we leverage the spatio-temporal properties of revision metadata to detect vandalism on Wikipedia. An administrative form of reversion called rollback enables the tagging of malicious edits, which are contrasted with nonoffending edits in numerous dimensions. Crucially, none of these features require inspection of the article or revision text. Ultimately, a classifier is produced which flags vandalism at performance comparable to the natural-language efforts we intend to complement (85% accuracy at 50% recall). The classifier is scalable (processing 100+ edits a second) and has been used to locate over 5,000 manually-confirmed incidents of vandalism outside our labeled set. KeywordsDesign, Measurement, Performance, Security, Wikipedia, spatio-temporal reputation, vandalism, collaborative software, content-based access control ABSTRACTBlatantly unproductive edits undermine the quality of the collaboratively-edited encyclopedia, Wikipedia. They not only disseminate dishonest and offensive content, but force editors to waste time undoing such acts of vandalism. Language-processing has been applied to combat these malicious edits, but as with email spam, these filters are evadable and computationally complex. Meanwhile, recent research has shown spatial and temporal features effective in mitigating email spam, while being lightweight and robust.In this paper, we leverage the spatio-temporal properties of revision metadata to detect vandalism on Wikipedia. An administrative form of reversion called rollback enables the tagging of malicious edits, which are contrasted with nonoffending edits in numerous dimensions. Crucially, none of these features require inspection of the article or revision text. Ultimately, a classifier is produced which flags vandalism at performance comparable to the natural-language efforts we intend to complement (85% accuracy at 50% recall). The classifier is scalable (processing 100+ edits a second) and has been used to locate over 5,000 manually-confirmed incidents of vandalism outside our labeled set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.