Interferon-␣ (IFN-␣) is indicated for the treatment of certain viral infections including hepatitis B and C, and cancers such as melanoma. The short circulating half-life of unmodified IFN-␣ makes frequent dosing (daily or three times weekly) over an extended period (6 -12 months or more) necessary. To improve the pharmacokinetics of IFN-␣ and decrease dosing frequency, IFN-␣ was fused to human serum albumin producing a new protein, Albuferon. In vitro comparisons of Albuferon and IFN-␣ showed similar antiviral and antiproliferative activities, although Albuferon was less potent on a molar basis than IFN-␣. Pharmacokinetic and pharmacodynamic properties of the fusion protein were enhanced in monkeys. After a single intravenous injection (30 g/kg,) clearance was 0.9 ml/h/kg, and the terminal half-life was 68 h. After 30 g/kg subcutaneous injection, apparent clearance (clearance divided by bioavailability) was 1.4 ml/h/kg, the terminal half-life was 93 h, and bioavailability was 64%. The rate of clearance of Albuferon was approximately 140-fold slower, and the half-life 18-fold longer, than for IFN-␣ given by the subcutaneous route in other monkey studies. Sera from Albuferon-treated monkeys demonstrated doserelated antiviral activity for Ն8 days based on an in vitro bioassay, whereas antiviral activity from IFN-␣-treated animals was only slightly elevated relative to vehicle on day 0. Significant increases in 2Ј,5Ј-oligoadenylate synthetase mRNA relative to IFN-␣-or vehicle-treated animals were maintained for Ն10 days after subcutaneous dosing. The improved pharmacokinetics of Albuferon are accompanied by an improved pharmacodynamic response suggesting that Albuferon may offer the benefits of less frequent dosing and a potentially improved efficacy profile compared with IFN-␣.
Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.
The ability to genetically encode non-natural amino acids (nnAAs) into proteins offers an expanded tool set for protein engineering. nnAAs containing unique functional moieties have enabled the study of post-translational modifications, protein interactions, and protein folding. In addition, nnAAs have been developed that enable a variety of biorthogonal conjugation chemistries that allow precise and efficient protein conjugations. These are being studied to create the next generation of antibody-drug conjugates with improved efficacy, potency, and stability for the treatment of cancer. However, the efficiency of nnAA incorporation, and the productive yields of cell-based expression systems, have limited the utility and widespread use of this technology. We developed a process to isolate stable cell lines expressing a pyrrolysyl-tRNA synthetase/tRNApyl pair capable of efficient nnAA incorporation. Two different platform cell lines generated by these methods were used to produce IgG-expressing cell lines with normalized antibody titers of 3 g/L using continuous perfusion. We show that the antibodies produced by these platform cells contain the nnAA functionality that enables facile conjugations. Characterization of these highly active and robust platform hosts identified key parameters that affect nnAA incorporation efficiency. These highly efficient host platforms may help overcome the expression challenges that have impeded the developability of this technology for manufacturing proteins with nnAAs and represents an important step in expanding its utility.
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBDconjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11deficient tumor cells, and increased sensitivity to PBD and PBDconjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Background Heart failure is one of the leading causes of death in Western countries, and there is a need for new therapeutic approaches. Relaxin‐2 is a peptide hormone that mediates pleiotropic cardiovascular effects, including antifibrotic, angiogenic, vasodilatory, antiapoptotic, and anti‐inflammatory effects in vitro and in vivo. Methods and Results We developed RELAX 10, a fusion protein composed of human relaxin‐2 hormone and the Fc of a human antibody, to test the hypothesis that extended exposure of the relaxin‐2 peptide could reduce cardiac hypertrophy and fibrosis. RELAX 10 demonstrated the same specificity and similar in vitro activity as the relaxin‐2 peptide. The terminal half‐life of RELAX 10 was 7 days in mouse and 3.75 days in rat after subcutaneous administration. We evaluated whether treatment with RELAX 10 could prevent and reverse isoproterenol‐induced cardiac hypertrophy and fibrosis in mice. Isoproterenol administration in mice resulted in increased cardiac hypertrophy and fibrosis compared with vehicle. Coadministration with RELAX 10 significantly attenuated the cardiac hypertrophy and fibrosis compared with untreated animals. Isoproterenol administration significantly increased transforming growth factor β1 (TGF‐β1)–induced fibrotic signaling, which was attenuated by RELAX 10. We found that RELAX 10 also significantly increased protein kinase B/endothelial NO synthase signaling and protein S‐nitrosylation. In the reversal study, RELAX 10‐treated animals showed significantly reduced cardiac hypertrophy and collagen levels. Conclusions These findings support a potential role for RELAX 10 in the treatment of heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.