Key pointsr Age-related arterial dysfunction, characterized by oxidative stress-and inflammation-mediated endothelial dysfunction and arterial stiffening, is the primary risk factor for cardiovascular diseases.Vienna E. Brunt received her PhD in Human Physiology from the University of Oregon in 2016. She is currently a postdoctoral fellow in Dr D. R. Seals' Integrative Physiology of Aging Laboratory at the University of Colorado Boulder. The studies described in the present study represent work carried out as part of an NIH T32 fellowship through the Division of Cardiology at the University of Colorado Denver. Her long-term research goals are to investigate the efficacy of novel interventions for preserving vascular function with ageing, thereby preventing and/or delaying the progression of cardiovascular diseases. Rachel A. Gioscia-Ryan completed her PhD in the Integrative Physiology of Aging Laboratory at the University of Colorado Boulder in 2016 and is currently in medical school at the University of Michigan. She is pursuing a career as a clinician-scientist conducting integrative physiological studies with the aim of improving human health and patient care. * These authors contributed equally to this work.Abstract Oxidative stress-mediated arterial dysfunction (e.g. endothelial dysfunction and large elastic artery stiffening) is the primary mechanism driving age-related cardiovascular diseases. Accumulating evidence suggests the gut microbiome modulates host physiology because dysregulation ('gut dysbiosis') has systemic consequences, including promotion of oxidative stress. The present study aimed to determine whether the gut microbiome modulates arterial function with ageing. We measured arterial function in young and older mice after 3-4 weeks of treatment with broad-spectrum, poorly-absorbed antibiotics to suppress the gut microbiome. To identify potential mechanistic links between the gut microbiome and age-related arterial dysfunction, we sequenced microbiota from young and older mice and measured plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide (TMAO). In old mice, antibiotics reversed endothelial dysfunction [area-under-the-curve carotid artery dilatation to acetylcholine in young: 345 ± 16 AU vs. old control (OC): 220 ± 34 AU, P < 0.01; vs. old antibiotic-treated (OA): 334 ± 15 AU; P < 0.01 vs. OC] and arterial stiffening (aortic pulse wave velocity in young: 3.62 ± 0.15 m s −1 vs. OC: 4.43 ± 0.38 m s −1 ; vs. OA: 3.52 ± 0.35 m s −1 ; P = 0.03). These improvements were accompanied by lower oxidative stress and greater antioxidant enzyme expression. Ageing altered the abundance of gut microbial taxa associated with gut dysbiosis. Lastly, plasma TMAO was higher with ageing (young: 2.6 ± 0.4 μmol L −1 vs. OC: 7.2 ± 2.0 μmol L −1 ; P < 0.0001) and suppressed by antibiotic treatment (OA: 1.2 ± 0.2 μmol L −1 ; P < 0.0001 vs. OC). The results of the present study provide the first evidence for the gut microbiome being an important mediator of age-related arterial dysfunction and ...
Quercetin (Q) is a bioactive flavonol with potential to benefit human health. However, Q bioavailability is relatively low, due to its poor aqueous solubility and extensive phase-II metabolism. Strategies to increase solution concentrations in the small intestinal lumen have the potential to substantially increase Q bioavailability, and by extension, efficacy. We aimed to achieve this by incorporating Q into amorphous solid dispersions (ASDs) with cellulose derivatives. Q was dispersed in matrices of cellulose esters including 6-carboxycellulose acetate butyrate (CCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate suberate (CASub) to afford ASDs that provided stability against crystallization, and pH-triggered release. Blends of CASub and CCAB with the hydrophilic polyvinylpyrrolidone (PVP) further enhanced dissolution. The ASD 10% Q:20% PVP:70% CASub most significantly enhanced Q solution concentration under intestinal pH conditions, increasing area under the concentration/time curve (AUC) 18-fold compared to Q alone. This novel ASD method promises to enhance Q bioavailability in vivo.
Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP-1) secretion. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption, and increased GLP-1 secretion may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder polyphenols was investigated. Grape powder significantly reduced (p < 0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9-39) compared to sugar-matched control, indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder per kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not impove glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrant further study.
The mechanism by which grapes and grape flavan‐3‐ols improve glycemic control is poorly understood. Studies have shown that dietary flavan‐3‐ols may act in the gut to increase secretion of incretins such as glucagon‐like peptide‐1 (GLP‐1). Our objectives were to determine the impact of grapes on GLP‐1 signaling and acute glycemic control, and compare the effects of grape administration to the gut vs. peripheral tissues. The impact of a GLP‐1 receptor antagonist (vs. vehicle) on oral glucose tolerance was studied in mice administered either grape powder (a substitute for fresh grapes) or control. Additionally, the effect of delivering grape (or control) orally vs. to the intraperitoneal (i.p.) cavity was examined. In control mice, GLP‐1 receptor antagonism significantly increased oral glucose area under the curve (AUC) vs. vehicle. While grape powder did not lower AUC in vehicle‐treated mice compared to vehicle‐treated control, it did inhibit the deleterious effects of GLP‐1 receptor antagonism compared to GLP‐1 receptor antagonism in control mice. This suggests that grapes may not affect normal glucose metabolism, but may prevent the negative effects of a blunted incretin response in prediabetes and diabetes. However, the mechanism remains unknown. Administration of grape powder to peripheral tissues (via i.p. injection) resulted in significantly elevated oral glucose AUC compared to oral administration of grape powder. This suggests that increased bioavailability of grape constituents to peripheral tissues (i.e. skeletal muscle) may not results in improved anti‐diabetic activities. This research was funded by The California Table Grape Commission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.