A novel multiline filter using a two-dimensional guided-mode resonant (GMR) filter is proposed. The filter concept utilizes the multiple planes of diffraction produced by the two-dimensional grating. Multiple resonances are obtained by matching the guided modes in the different planes of diffraction to different wavelengths. It is shown that the location and the separation between resonances can be specifically controlled by modifying the periodicity of the grating and the other physical dimensions of the structure. This is in contrast to the one-dimensional GMR filters where the location of the resonances is material dependent. Two-line reflection filter designs with spectral linewidths less than 1 nm and a controllable spectral separation of up to 23% of the short resonance wavelength are presented using rectangular-grid grating GMR structures. Three-line filters are designed in hexagonal-grid grating GMR structures with two independently controllable resonance locations.
Broadening of the angular response of two-dimensional (2D) guided mode resonant spectral filters at oblique incidence is investigated. Coupling into multiple fundamental guided resonant modes having the same propagation constant but propagating in different planes (inherent multiple-plane diffraction by 2D gratings) is shown to significantly broaden the angular tolerance while maintaining narrow linewidth. Resonances have symmetric and broad angular responses when the incident wave is coupled to four resonant modes in a structure with a hexagonal grating pattern. Further broadening is implemented by enhancing the second Bragg diffraction of the 2D grating structure. Resonance with a narrow spectral linewidth (Dlambda(FWHM) approximately 1.6 x 10(-4)lambda(0)) and angularly tolerant to an ~6 mum beam diameter is obtained. A second approach utilizing a dual 2D grating configuration with a second grating on the substrate side is shown to increase the lateral confinement, causing the merging of two successive resonant bands. This results in further improvement of the angular/spectral linewidth ratio by ~80%.
Multilayer, multimode waveguides are utilized in resonant grating filters having a broadened angular acceptance bandwidth for multiple wavelengths at a single oblique angle of incidence. It is shown that the waveguide grating structure should support a few leaky modes in order to support a multiwavelength resonant filter at oblique incidence with broadened angle acceptance at each wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.