Abstract. A model based on Mie theory is described that estimates bulk particulaterefractive index •p from in situ optical measurements alone. Bulk refractive index is described in terms of the backscattering ratio and the hyperbolic slope of the particle size distribution (PSD). The PSD slope • is estimated from the hyperbolic slope of the particulate attenuation spectrum •/according to the relationship •/• • -3, verified with Mie theory. Thus the required in situ measurements are the particulate backscattering coefficient, the total particulate scattering coefficient, and the particulate attenuation coefficient. These parameters can be measured with commercially available instrumentation with rapid sampling rates and real-time data return. Application of the model to data from the Gulf of California yielded results that agreed with expectations, e.g., predicted •p was 1.04-1.05 in the chlorophyll maximum and 1.14-1.18 near sediments. Below the chlorophyll maximum in case I type waters, predicted •p values were between 1.10 and 1.12, suggesting the presence of a significant inorganic mineral component in the background or detrital organic particles with low water content.
IntroductionThe angular distribution of scattering by oceanic particle assemblages depends on the size distribution and refractive index of the particles. Consequently, there has been considerable interest in trying to estimate these particle characteristics using inversion algorithms based on scattering.
The temperature and salt dependencies of absorption by liquid water (H2O) and heavy water (D2O) were determined using a hyperspectral absorption and attenuation meter (WET Labs, AC-S). Sodium chloride (NaCl) was used as a proxy for seawater salts. There was no significant temperature (PsiT) or salt (PsiS) dependency of absorption at wavelengths <550 nm. At wavelengths >550 nm, PsiT exhibited peaks at approximately 604, 662, and 740 nm. A small negative trough in PsiS occurred at approximately 590 nm, followed by a small positive peak approximately 620 nm, a larger negative trough at approximately 720 nm, and a strong positive peak at approximately 755 nm. The salt dependency of absorption by heavy water, Psis(H), exhibited a negative power-law shape with very low Psis(H), at wavelengths >550 nm. Our experiments with NaCl, clean open ocean seawater, and artificial seawater support the hypothesis that salts modify the absorption spectra of seawater by modifying the molecular matrix and vibrations of pure water.
The biological and physical processes contributing to planktonic thin layer dynamics were examined in a multidisciplinary study conducted in East Sound, Washington, USA between June 10 and June 25, 1998. The temporal and spatial scales characteristic of thin layers were determined using a nested sampling strategy utilizing 4 major types of platforms: (1) an array of 3 moored acoustical instrument packages and 2 moored optical instrument packages that recorded distributions and intensities of thin layers; (2) additional stationary instrumentation deployed outside the array comprised of meteorological stations, wave-tide gauges, and thermistor chains; (3) a research vessel anchored 150 m outside the western edge of the array; (4) 2 mobile vessels performing basin-wide surveys to define the spatial extent of thin layers and the physical hydrography of the Sound. We observed numerous occurrences of thin layers that contained locally enhanced concentrations of material; many of the layers persisted for intervals of several hours to a few days. More than one persistent thin layer may be present at any one time, and these spatially distinct thin layers often contain distinct plankton assemblages. The results suggest that the species or populations comprising each distinct thin layer have responded to different sets of biological and/or physical processes. The existence and persistence of planktonic thin layers generates extensive biological heterogeneity in the water column and may be important in maintaining species diversity and overall community structure.
Abstract. Spectral attenuation and absorption coefficients of particulate matter and colocated hydrographic measurements were obtained in the Mid-Atlantic Bight during the fall of 1996 and the spring of 1997 as part of the Coastal Mixing and Optics experiment. Within the bottom boundary layer (BBL) the magnitude of the beam attenuation decreased and its spectral shape became steeper with distance from the bottom. Concurrently, the slope of the particulate size distribution (PSD) was found to increase with distance from the bottom. Changes in the PSD shape and the magnitude of the beam attenuation as functions of distance from the bottom in the BBL are consistent with particle resuspension and settling in the BBL, two processes that are dependent on particle size and density. For particles of similar density, resuspension and settling would result in a flattening of the PSD and an increase in the beam attenuation toward the bottom. In both fall and spring the magnitude of the particle attenuation coefficient correlates with its spectral shape, with a flatter shape associated with higher values of the attenuation. This observation is consistent with idealized optical theory for polydispersed nonabsorbing spheres. According to this theory, changes in the steepness of the particle size distribution (particle concentration as a function of size) will be associated with changes in the steepness of the attenuation spectra as a function of wavelength; a flatter particle size distribution will be associated with a flatter attenuation spectrum. In addition, the observed ranges of the beam attenuation spectral slope and the PSD exponent are found to be consistent with this theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.