In AP, the production of inflammatory cytokines precedes up-regulation of P- and E-selectin, whose expression coincided with the increased infiltration of CD18-positive cells and neutrophil sequestration in lung tissue. Temporally, these events correlate with evidence of histologic pulmonary injury and underscore the role of adhesion molecules as mediators of pathophysiologic events. This mechanistic pathway may afford novel therapeutic interventions in clinical disease by using blocking agents to ameliorate the systemic manifestations of AP.
Hypothesis:The levels of intestinal interleukin 10 and interleukin 4, inhibitors of intercellular adhesion molecule-1 (ICAM-1) expression, decline with total parenteral nutrition (TPN). These cytokine changes induced by lack of enteral nutrition may increase ICAM-1 expression, resulting in polymorphonuclear neutrophil accumulation in intestine.Design: Prospective randomized experimental trials. Setting: Laboratory.Materials: Male mice.Interventions: Sixty-three mice were randomized to chow, intravenous TPN, or intragastric TPN. Main Outcome Measures: Experiment 1: After diet manipulation, iodine 125-labeled anti-ICAM-1 antibody and iodine 131-labeled nonbinding antibody were injected to quantify ICAM-1 expression on endothelial cells in the lung, liver, kidney, and small intestine. Mea-surement of myeloperoxidase was used to quantify polymorphonuclear neutrophil accumulation in the organs. Experiment 2: Intestine was harvested for both ICAM-1 and myeloperoxidase levels after chow refeeding of mice in the intravenous TPN group.Results: In experiment 1, uninjured mice fed intravenous TPN showed significantly increased intestinal ICAM-1 expression and polymorphonuclear neutrophil accumulation with no significant changes in the lung, liver, or kidney. No changes occurred in mice fed chow or intragastric TPN. In experiment 2, reinstitution of enteral feeding returned intestinal ICAM-1 and myeloperoxidase levels to normal.Conclusion: Gut changes associated with lack of enteral feeding induce endothelial changes and an immunologic response, which may influence subsequent responses to injury.
ObjectiveTo determine whether blocking the cell surface expression of intracellular adhesion molecules (ICAM-1) in established severe acute pancreatitis (AP) would ameliorate pulmonary injury. Summary Background DataLung injury in AP is in part mediated by infiltrating leukocytes, which are directed to lung tissue by ICAM-l. The authors' laboratory has previously demonstrated that AP results in overproduction of inflammatory cytokines, upregulation of pulmonary ICAM-1 expression, and a concomitant infiltration of neutrophils, which results in lung injury. MethodsYoung female mice were fed a choline-deficient/ethioninesupplemented diet to induce AP and were treated with a blocking dose of monoclonal antibody specific to the ICAM-1 receptor. Antibody treatment was administered at 72, 96, and 120 hours after beginning the diet, and all animals were killed at 144 hours. The degree of pancreatitis was evaluated by serum biochemical and tumor necrosis factor ␣ levels as well as histology. The dual radiolabeled monoclonal antibody method was used to quantitate ICAM-1 cell surface expression in pulmonary tissue. Lung injury was assessed histologically and by determining lung microvascular permeability by measuring accumulated 125 I-radiolabeled albumin. Pulmonary neutrophil sequestration was determined by the myeloperoxidase assay. ResultsAll mice developed severe AP, and pancreatic injury was equally severe in both treated and untreated groups. Pulmonary ICAM-1 expression was significantly upregulated in animals with AP compared with controls. Treatment with a blocking dose of anti-ICAM-1 antibody after the induction of AP resulted in inhibited ICAM-1 cell surface expression to near control levels. Compared to untreated animals with AP, mice treated with anti-ICAM-1 mice had significantly reduced histologic lung injury and neutrophil sequestration, and a decreased microvascular permeability by more than twofold. ConclusionsThese results demonstrate for the first time that treatment targeting the cell surface expression of ICAM-1 after the induction of AP ameliorates pulmonary injury, even in the face of severe pancreatic disease.
Acute pancreatitis (AP) is characterized by release of proteolytic enzymes from the pancreas and a powerful inflammatory cytokine cascade that mediates the systemic manifestations and contributes to the mortality of the disease. The purpose of this study was to examine a potential link between pancreatic proteolytic enzymes, which are increased in AP, and cytokine production. To evaluate this, we incubated rat peritoneal macrophages (PMO) with increasing concentrations of trypsin and measured cytokine production. Supernatants from the cell cultures were assayed for TNF-alpha and IL-1beta, and the PMO were collected for the evaluation of cytokine mRNA by polymerase chain reaction (PCR). Further to evaluate the role of pancreatic proteases in triggering the cytokine cascade in AP, trypsin was injected into the peritoneal cavity of Sprague-Dawley rats, and the production of cytokines was measured in the peritoneal fluid. Controls included injection of inactivated trypsin. Incubation of PMO with trypsin in vitro resulted in a dose-dependent increase in TNF-alpha production with maximal response (2,660.5+/-748.8 pg/mL) at 10 microg/mL protease. Peak TNF-alpha and IL-1beta release was noted 16 h after stimulation of the PMO (2,759.5+/-698.0 pg/mL and 160,596+/-4,065 cpm, respectively). Trypsin-induced TNF-alpha production was not due to release of cell-associated cytokine, inasmuch as activation of PMO with this protease causing an increase in TNF-alpha mRNA by 30 minutes, reaching a 14-fold increase at 4 h. Trypsin-injected animals produced TNF-alpha-containing ascitic fluid in a dose-dependent manner with peak TNF-alpha at 2 h (371.3+/-180 pg/mL) versus control (53.8+/-11.2 pg/mL; p < 0.022). No TNF-alpha was found in ascites of rats injected with heat-inactivated trypsin. Histologic examination of trypsin-injected animals revealed evidence of pulmonary inflammation at 2 and 4 hours. We conclude that the proteolytic enzyme trypsin stimulates cytokine production from macrophages in vitro and in vivo. This model demonstrates for the first time that trypsin is a potential mediator of the cytokine response seen during AP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.