Recent work has demonstrated that changes in ventral tegmental area (VTA) GABA(A) receptor ion conductance properties are responsible for switching morphine's positive reinforcing properties from a dopamine-independent to a dopamine-dependent pathway when an animal transitions from a non-deprived (minimal drug exposure) to a dependent (chronic drug exposure) and withdrawn state. Here we show that a double dissociation of ethanol's positive reinforcing properties is exactly opposite to that seen with morphine. In C57BL/6 mice, ethanol-conditioned place preferences were blocked in dopamine D2 receptor knockout non-deprived mice, but not by a lesion of the tegmental pedunculopontine nucleus (TPP). On the other hand, TPP lesions, but not a D2 receptor mutation, blocked ethanol-conditioned place preferences in ethanol-dependent and withdrawn mice. The opposite effects of ethanol and opiates can be explained by their proposed actions through a common VTA GABA(A) receptor switching mechanism.
The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.
The tegmental pedunculopontine nucleus (TPP) of the midbrain is critical in mediating the acute rewarding effects of opiates. However, the circuitry and neurochemistry underlying this effect has not been determined. Here we identify TPP receptors and cell types involved in systemic morphine reward and suggest an anatomical and neurochemical model for reward in the TPP. Simple hypothetical anatomical models for serial cell arrangements and receptors in the TPP were proposed and predictions of behavioral outcome (reward or no reward) then were made, based on the administration of agonists and antagonists directly into the TPP of rats. We report that TPP-administered NMDA produced rewarding effects, although GABA agonists and antagonists had no motivational effects on their own. However, the NMDA receptor antagonist AP-7 and the GABA-B receptor antagonist saclofen, while having no motivational effects on their own, blocked systemic morphine reward as measured by conditioned place preference. These results provide positive evidence for GABA-B and glutamate synapses in the TPP, which mediates systemic morphine reward and suggest that a serial pathway for morphine reward in the TPP is unlikely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.