During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.
Environmental DNA (eDNA) sampling is a promising tool for the detection of rare and cryptic taxa, such as aquatic pathogens, parasites and invasive species. Environmental DNA sampling workflows commonly rely on multi‐stage hierarchical sampling designs that induce complicated dependencies within the data. This complex dependence structure can be intuitively modelled with Bayesian multi‐scale occupancy models. However, current software for such models are computationally demanding, impeding their use.
We present an r package, msocc, that implements a data augmentation strategy to fit fully Bayesian, computationally efficient multi‐scale occupancy models. The msocc package allows users to fit multi‐scale occupancy models, to estimate and visualize posterior summaries of site, sample and replicate‐level occupancy, and to compare different models using Bayesian information criterion. Additionally, we provide a supplemental web application that allows users to investigate study design for multi‐scale occupancy models and acts as a graphical user interface to the msocc package.
The utility of the msocc package is illustrated on a published dataset and the functions in msocc are compared to the primary Bayesian toolkit for multi‐scale occupancy modelling, eDNAoccupancy, using various computational benchmarks. These benchmarks indicate that msocc is capable of fitting models 50 times faster than eDNAoccupancy.
We hope that access to software that efficiently fits, analyses and conducts study design investigations for multi‐scale occupancy models facilitates their implementation by the research and wildlife management communities.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.