The phytochemical composition and antioxidant capacities of 6 new NRCRI turmeric (Curcuma longa L.) accessions (39, 35, 60, 30, 50 and 41) were determined using standard techniques. The moisture contents of the tumeric samples ranged from 15.75 to 47.80% and the curcumin contents of the turmeric samples fell within the range of curcumin obtained from turmeric in other countries of the world. Furthermore, the turmeric accessions contained considerable amounts of antioxidants (measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and reducing power assays), alkaloids, flavonoids, anthocyanins, and phenolics. There was significant correlation between the anthocyanin contents of the tumeric accessions versus their alkaloid (0.744) and flavonoid contents (0.986) suggesting an additive effect between the anthocyanins and alkaloids in turmeric; significant correlation between the inhibition of the turmeric accessions on DPPH radical versus their flavonoid (0.892) and anthocyanin (0.949) contents and significant correlation between the reducing power of the turmeric accessions versus their flavonoid (0.973) and anthocyanin (0.974) contents suggesting that anthocyanins as flavonoids largely contribute to the antioxidant activities of turmeric. The positive regression recorded between inhibition of DPPH radical by the turmeric accessions and quercetin versus reducing power (R2 = 0.852) suggest that any of these methods could be used to assess the antioxidant activities of tumeric. Finally, the study indicated the potentials of the turmeric accessions especially accessions 30 and 50 as promising sources of antioxidants.
The effect of processing on the biochemical contents of Acanthus montanus leaves was investigated. The moisture, crude protein, lipid, fiber, ash, and total carbohydrate contents of the raw vegetable were 59.15, 1.85, 2.32, 3.76, 2.04, and 34.65 g/100 g, respectively. The saponin, alkaloid, tannin, flavonoid, phenol, and anthocyanin contents of the raw vegetable were 5.35, 4.04, 1.10, 3.53, 2.87, and 1.27 g/100 g, respectively, while it contained 2.65 mg/100 g calcium, 1.14 mg/100 g magnesium, 7.66 mg/100 g potassium, 350.75 μg/g vitamin A, 50.87 mg/100 g vitamin C, and 0.25% titratable acidity. There were significant reductions (p < .05) in the protein, lipid, fiber, ash, saponin, alkaloid, tannin, phenol, anthocyanin, calcium, magnesium, potassium, vitamin A, vitamin C, and titratable acidity of the boiled or boiled + sun‐dried A. montanus leaves; significant elevation of the moisture contents but significant reduction of the total carbohydrate contents of the boiled; and significant reduction of the moisture contents of the boiled + sun‐dried vegetable compared with the raw. There were significant increases (p < .05) in the total carbohydrate contents of the boiled + sun‐dried leaves; significant reductions (p < .05) in the moisture, saponin, alkaloid, and vitamins A and C contents of the sun‐dried vegetable; and no significant differences (p > .05) in the lipid, calcium, potassium, and ash, but significant increases (p < .05) in the protein, crude fiber, total carbohydrates, tannins, flavonoids, phenols, anthocyanin, magnesium, and titratable acidity of the sun‐dried vegetable when compared with the raw. Sun drying alone either retained or enhanced the release of some important bioactive compounds in A. montanus leaves. Furthermore, the reduced moisture content of the sun‐dried vegetable together with its increased titratable acidity will make the sun‐dried vegetable uninhabitable for microorganisms, thereby increasing its shelf life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.