The pathological sequestration of TAR DNA-binding protein 43 (TDP-43, encoded by TARDBP) into cytoplasmic pathological inclusions characterizes the distinct clinical syndromes of amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia, while also co-occurring in a proportion of patients with Alzheimer's disease, suggesting that the regional concentration of TDP-43 pathology has most relevance to specific clinical phenotypes. This has been reflected in the three different pathological staging schemes for TDP-43 pathology in these different clinical syndromes, with none of these staging schemes including a preclinical phase similar to that which has proven beneficial in other neurodegenerative diseases. To apply each of these three staging schemes for TDP-43 pathology, the clinical phenotype must be known undermining the potential predictive value of the pathological examination. The present study set out to test whether a more unified approach could accurately predict clinical phenotypes based solely on the regional presence and severity of TDP-43 pathology. The selection of brain regions of interest was based on key regions routinely sampled for neuropathological assessment under current consensus criteria that have also been used in the three TDP-43 staging schemes. The severity of TDP-43 pathology in these regions of interest was assessed in four clinicopathological phenotypes: amyotrophic lateral sclerosis (n = 27, 47-78 years, 15 males), behavioural variant frontotemporal dementia (n = 15, 49-82 years, seven males), Alzheimer's disease (n = 26, 51-90 years, 11 males) and cognitively normal elderly individuals (n = 17, 80-103 years, nine males). Our results demonstrate that the presence of TDP-43 in the hypoglossal nucleus discriminates patients with amyotrophic lateral sclerosis with an accuracy of 98%. The severity of TDP-43 deposited in the anterior cingulate cortex identifies patients with behavioural variant frontotemporal dementia with an accuracy of 99%. This identification of regional pathology associated with distinct clinical phenotypes suggests key regions on which probabilistic pathological criteria, similar to those currently available for Alzheimer's disease and dementia with Lewy bodies, can be developed for TDP-43 proteinopathies. We propose and validate a simplified probabilistic statement that involves grading the presence of TDP-43 in the hypoglossal nucleus and the severity of TDP-43 in the anterior cingulate for the pathological identification of TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia.
BackgroundTwo commercially available TDP43 antibodies (phosphorylated or pTDP43, non-phosphorylated or iTDP43) are currently in use for the neuropathological classification of FTLD-TDP cases into pathological subtypes. To date, no studies have performed direct comparisons between these TDP43 antibodies to determine if they identify the same FTLD-TDP subtypes. The reliability of subtype classification with the use of either of these antibodies has also not been investigated. The present study compares the severity of pathological lesions identified with pTDP43 and iTDP43 in a cohort of 14 FTLD-TDP cases, and assesses the accuracy and inter-observer reliability found with either of these antibodies.ResultspTDP43 identified a greater severity of pathological inclusions across FTLD-TDP cases in comparison to iTDP43 and a higher inter-observer of subtype classification was found with this antibody.ConclusionThis study demonstrates a higher consistency across independent observers in the pathological subtyping of FTLD-TDP cases with the use of a pTDP43 antibody in comparison to the iTDP43 antibody, and corroborates the use of pTDP43 for pathological classification of FTLD-TDP cases.
Introduction Mounting evidence supports an association between antihypertensive medication use and reduced risk of Alzheimer's disease (AD). Consensus on possible pathological mechanisms remains elusive. Methods Human brain tissue from a cohort followed to autopsy that included 96 cases of AD (46 medicated for hypertension) and 53 pathological controls (33 also medicated) matched for cerebrovascular disease was available from the New South Wales Brain Banks. Quantified frontal cortex amyloid beta (Aβ) and tau proteins plus Alzheimer's neuropathologic change scores were analyzed. Results Univariate analyses found no difference in amounts of AD proteins in the frontal cortex between medication users, but multivariate analyses showed that antihypertensive medication use was associated with a less extensive spread of AD proteins throughout the brain. Discussion The heterogeneous nature of the antihypertensive medications is consistent with downstream beneficial effects of blood pressure lowering and/or management being associated with the reduced spreading of AD pathology observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.