Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium N-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.
Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine, GABA, aspartate, and alanine. Blood glucose concentrations and (13)C enrichment were determined. (13)C-labeling in glutamate was lower in ZO and ZDF rats in comparison with the controls. The molecular carbon labeling (MCL) ratio between alanine and glutamate was higher in the ZDF rats. The MCL ratios of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more decreased than glycolytic activity. Furthermore, reduced glutamate-glutamine cycling was also observed in the obese and type 2 diabetic states.
We demonstrate the detection and characterization of ligand binding to viruses via NMR. To illustrate the methodology, the interaction of an antiviral compound with human rhinovirus serotype 2 (HRV2) was investigated. Specific interaction of a capsid-binding inhibitor and native HRV2 was monitored utilizing saturation transfer difference (STD) NMR. STD NMR experiments at atomic resolution allowed those regions of the ligand that are involved in the interaction with the virus to be determined. The approach allows for (i) the fast and robust assessment of binding, (ii) the determination of the ligand binding epitope at atomic resolution without the necessity to crystallize virus-ligand complexes, and (iii) the reuse of the virus in subsequent assays. This methodology enables one to easily identify binding of drugs, peptides, and receptor or antibody fragments to the viral capsid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.