Cardiovascular disease is a major cause of death worldwide. New diagnostic tools are needed to provide early detection and intervention to reduce mortality and increase both the duration and quality of life for patients with heart disease. Seismocardiography (SCG) is a technique for noninvasive evaluation of cardiac activity. However, the complexity of SCG signals introduced challenges in SCG studies. Renewed interest in investigating the utility of SCG accelerated in recent years and benefited from new advances in low-cost lightweight sensors, and signal processing and machine learning methods. Recent studies demonstrated the potential clinical utility of SCG signals for the detection and monitoring of certain cardiovascular conditions. While some studies focused on investigating the genesis of SCG signals and their clinical applications, others focused on developing proper signal processing algorithms for noise reduction, and SCG signal feature extraction and classification. This paper reviews the recent advances in the field of SCG.
Seismocardiography (SCG) is a non-invasive method that can be used for cardiac activity monitoring. This paper presents a new electrocardiogram (ECG) independent approach for estimating heart rate (HR) during low and high lung volume (LLV and HLV, respectively) phases using SCG signals. In this study, SCG, ECG, and respiratory flow rate (RFR) signals were measured simultaneously in 7 healthy subjects. The lung volume information was calculated from the RFR and was used to group the SCG events into low and high lung-volume groups. LLV and HLV SCG events were then used to estimate the subjects HR as well as the HR during LLV and HLV in 3 different postural positions, namely supine, 45 degree heads-up, and sitting. The performance of the proposed algorithm was tested against the standard ECG measurements. Results showed that the HR estimations from the SCG and ECG signals were in a good agreement (bias of 0.08 bpm). All subjects were found to have a higher HR during HLV (HRHLV) compared to LLV (HRLLV) at all postural positions. The HRHLV/HRLLV ratio was 1.11±0.07, 1.08±0.05, 1.09±0.04, and 1.09±0.04 (mean±SD) for supine, 45 degree-first trial, 45 degree-second trial, and sitting positions, respectively. This heart rate variability may be due, at least in part, to the well-known respiratory sinus arrhythmia. HR monitoring from SCG signals might be used in different clinical applications including wearable cardiac monitoring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.