Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host–microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host–symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes. Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host.
Oral microbiome research has moved from asking “Who’s there?” to “What are they doing?” Understanding what microbes “do” involves multiple approaches, including obtaining genomic information and examining the interspecies interactions. Recently we isolated a human oral Saccharibacteria (TM7) bacterium, HMT-952, strain TM7x, which is an ultrasmall parasite of the oral bacterium Actinomyces odontolyticus. The host-parasite interactions, such as phage-bacterium or Saccharibacteria–host bacterium, are understudied areas with large potential for insight. The Saccharibacteria phylum is a member of Candidate Phyla Radiation, a large lineage previously devoid of cultivated members. However, expanding our understanding of Saccharibacteria-host interactions requires examining multiple phylogenetically distinct Saccharibacteria-host pairs. Here we report the isolation of 3 additional Saccharibacteria species from the human oral cavity in binary coculture with their bacterial hosts. They were obtained by filtering ultrasmall Saccharibacteria cells free of other larger bacteria and inoculating them into cultures of potential host bacteria. The binary cocultures obtained could be stably passaged and studied. Complete closed genomes were obtained and allowed full genome analyses. All have small genomes (<1 Mb) characteristic of parasitic species and dramatically limited de novo synthetic pathway capabilities but include either restriction modification or CRISPR-Cas systems as part of an innate defense against foreign DNA. High levels of gene synteny exist among Saccharibacteria species. Having isolates growing in coculture with their hosts allowed time course studies of growth and parasite-host interactions by phase contrast, fluorescence in situ hybridization, and scanning electron microscopy. The cells of the 4 oral Saccharibacteria species are ultrasmall and could be seen attached to their larger Actinobacteria hosts. Parasite attachment appears to lead to host cell death and lysis. The successful cultivation of Saccharibacteria species has significantly expanded our understanding of these ultrasmall Candidate Phyla Radiation bacteria.
The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-κB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.