In this work we investigate the automatic detection of fire pixel regions in video (or still) imagery within real-time bounds without reliance on temporal scene information. As an extension to prior work in the field, we consider the performance of experimentally defined, reduced complexity deep convolutional neural network architectures for this task. Contrary to contemporary trends in the field, our work illustrates maximal accuracy of 0.93 for whole image binary fire detection, with 0.89 accuracy within our superpixel localization framework can be achieved, via a network architecture of signficantly reduced complexity. These reduced architectures additionally offer a 3-4 fold increase in computational performance offering up to 17 fps processing on contemporary hardware independent of temporal information. We show the relative performance achieved against prior work using benchmark datasets to illustrate maximally robust real-time fire region detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.