Multi-shelled upconversion nanoparticles with significantly enhanced emission intensity are synthesized via successive epitaxial layer-by-layer formation (SELF) strategy and used in dual-modal anticounterfeiting and latent fingerprint detection.
In this work, the photocatalytic hydrogen evolution from ammonia borane under near-infrared laser irradiation at ambient temperature was demonstrated by using the novel core-shell upconversion-semiconductor hybrid nanostructures (NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O). The particles were successfully synthesized in a final concentration of 10 mg/mL. The particles were characterized via high resolution transmission electron microscopy (HRTEM), photoluminescence, energy dispersive X-ray analysis (EDAX), and powder X-ray diffraction. The near-infrared-driven photocatalytic activities of such hybrid nanoparticles are remarkably higher than that with bare upconversion nanoparticles (UCNPs) under the same irradiation. The upconverted photoluminescence of UCNPs efficiently reabsorbed by Cu2O promotes the charge separation in the semiconducting shell, and facilitates the formation of photoinduced electrons and hydroxyl radicals generated via the reaction between H2O and holes. Both serve as reactive species on the dissociation of the weak B-N bond in an aqueous medium, to produce hydrogen under near-infrared excitation, resulting in enhanced photocatalytic activities. The photocatalyst of NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O (UCNPs@Cu2O) suffered no loss of efficacy after several cycles. This work sheds light on the rational design of near-infrared-activated photocatalysts, and can be used as a proof-of-concept for on-board hydrogen generation from ammonia borane under near-infrared illumination, with the aim of green energy suppliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.