Two advances in the synthesis of hairpin pyrrole-imidazole polyamides (PAs) are described. First, the application of a convergent synthetic strategy is shown, involving the Boc-based solid phase synthesis of a C-terminal fragment and the solution phase synthesis of the N-terminal fragment. Second a new hybrid resin is developed that allows for the preparation of hairpin PAs lacking a C-terminal β-alanine tail. Both methods are compatible with a range of coupling reagents and provide a facile, modular route to prepare PA libraries in high yield and crude purity.
Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days.
This manuscript describes a one-pot method for the synthesis of size-and shape-selected silver nanoparticles (AgNPs) using Tollens' reagent [Ag(NH 3 ) 2 OH] as the silver source. Sugar triazole ligands facilitate the formation of monodisperse AgNPs in which the size and shape can be controlled according to the reaction conditions. Increasing the size of the ligand reduces size tunability but enhances colloidal stability in high-salt buffers. A key conclusion from this study is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.