Optical properties can be programmed on mesoscopic scales by patterning host materials while ordering their nanoparticle inclusions. While liquid crystals are often used to define the ordering of nanoparticles dispersed within them, this approach is typically limited to liquid crystals confined in classic geometries. In this work, the orientational order that liquid crystalline colloidal hosts impose on anisotropic nanoparticle inclusions is combined with an additive manufacturing method that enables engineered, macroscopic three-dimensional (3D) patterns of co-aligned gold nanorods and cellulose nanocrystals. These gels exhibit polarization-dependent plasmonic properties that emerge from the unique interaction between the host medium’s anisotropic optical properties defined by orientationally ordered cellulose nanocrystals, from the liquid crystal’s gold nanorod inclusions, and from the complexity of spatial patterns accessed with 3D printing. The gels’ optical properties that are defined by the interplay of these effects are tuned by controlling the gels’ order, which is tuned by adjusting the gels’ cellulose nanocrystal concentrations. Lithe optical responsiveness of these composite gels to polarized radiation may enable unique technological applications like polarization-sensitive optical elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.