Only a few intracellular S-nitrosylated proteins have been identified, and it is unknown if protein S-nitrosylation/denitrosylation is a component of signal transduction cascades. Caspase-3 zymogens were found to be S-nitrosylated on their catalytic-site cysteine in unstimulated human cell lines and denitrosylated upon activation of the Fas apoptotic pathway. Decreased caspase-3 S-nitrosylation was associated with an increase in intracellular caspase activity. Fas therefore activates caspase-3 not only by inducing the cleavage of the caspase zymogen to its active subunits, but also by stimulating the denitrosylation of its active-site thiol. Protein S-nitrosylation/denitrosylation can thus serve as a regulatory process in signal transduction pathways.
Interactions of nitric oxide (NO) with hemoglobin (Hb) could regulate the uptake and delivery of oxygen (O(2)) by subserving the classical physiological responses of hypoxic vasodilation and hyperoxic vasconstriction in the human respiratory cycle. Here we show that in in vitro and ex vivo systems as well as healthy adults alternately exposed to hypoxia or hyperoxia (to dilate or constrict pulmonary and systemic arteries in vivo), binding of NO to hemes (FeNO) and thiols (SNO) of Hb varies as a function of HbO(2) saturation (FeO(2)). Moreover, we show that red blood cell (RBC)/SNO-mediated vasodilator activity is inversely proportional to FeO(2) over a wide range, whereas RBC-induced vasoconstriction correlates directly with FeO(2). Thus, native RBCs respond to changes in oxygen tension (pO2) with graded vasodilator and vasoconstrictor activity, which emulates the human physiological response subserving O(2) uptake and delivery. The ability to monitor and manipulate blood levels of NO, in conjunction with O(2) and carbon dioxide, may therefore prove useful in the diagnosis and treatment of many human conditions and in the development of new therapies. Our results also help elucidate the link between RBC dyscrasias and cardiovascular morbidity.
The tenet of high-affinity nitric oxide (NO) binding to a haemoglobin (Hb) has shaped our view of haem proteins and of small diffusible signaling molecules. Specifically, NO binds rapidly to haem iron in Hb (k approximately 10[7] M[-1] s[-1]) and once bound, the NO activity is largely irretrievable (Kd approximately 10[-5] s[-1]); the binding is purportedly so tight as to be unaffected by O2 or CO. However, these general principles do not consider the allosteric state of Hb or the nature of the allosteric effector, and they mostly derive from the functional behaviour of fully nitrosylated Hb, whereas Hb is only partially nitrosylated in vivo. Here we show that oxygen drives the conversion of nitrosylhaemoglobin in the 'tense' T (or partially nitrosylated, deoxy) structure to S-nitrosohaemoglobin in the 'relaxed' R (or ligand-bound, oxy) structure. In the absence of oxygen, nitroxyl anion (NO-) is liberated in a reaction producing methaemoglobin. The yields of both S-nitrosohaemoglobin and methaemoglobin are dependent on the NO/Hb ratio. These newly discovered reactions elucidate mechanisms underlying NO function in the respiratory cycle, and provide insight into the aetiology of S-nitrosothiols, methaemoglobin and its related valency hybrids. Mechanistic reexamination of NO interactions with other haem proteins containing allosteric-site thiols may be warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.