We report measurements of the Kondo effect in a double quantum dot, where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the double quantum dot system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.