Hop (Humulus lupulus L. Cannabaceae) is an economically important crop for the brewing industry, where it is used to impart flavor and aroma to beer, and has also drawn attention in recent years due to its potential pharmaceutical applications. Essential oils (mono- and sesquiterpenes), bitter acids (prenylated polyketides), and prenylflavonoids are the primary phytochemical components that account for these traits, and all accumulate at high concentrations in glandular trichomes of hop cones. To understand the molecular basis for terpene accumulation in hop trichomes, a trichome cDNA library was constructed and 9,816 cleansed expressed sequence tag (EST) sequences were obtained from random sequencing of 16,152 cDNA clones. The ESTs were assembled into 3,619 unigenes (1,101 contigs and 2,518 singletons). Putative functions were assigned to the unigenes based on their homology to annotated sequences in the GenBank database. Two mono- and two sesquiterpene synthases identified from the EST collection were expressed in Escherichia coli. Hop MONOTERPENE SYNTHASE2 formed the linear monterpene myrcene from geranyl pyrophosphate, whereas hop SESQUITERPENE SYNTHASE1 (HlSTS1) formed both caryophyllene and humulene from farnesyl pyrophosphate. Together, these enzymes account for the production of the major terpene constituents of the hop trichomes. HlSTS2 formed the minor sesquiterpene constituent germacrene A, which was converted to beta-elemene on chromatography at elevated temperature. We discuss potential functions for other genes expressed at high levels in developing hop trichomes.
Abstract-Chronic angiotensin II (Ang II) infusion, in rats fed high salt, engages the sympathetic nervous system to increase venomotor tone. The splanchnic sympathetic nervous system is the most important regulator of venous tone, indicating that splanchnic sympathetic nervous system activity may be increased in Ang II salt hypertension. We hypothesized that celiac ganglionectomy (CGx), to selectively disrupt sympathetic innervation to the splanchnic circulation, would attenuate arterial pressure (AP), and venous tone increases in Ang II salt hypertension. Rats fed 2% or 0.4% NaCl were instrumented to allow AP measurement by radiotelemetry at the same time as surgical CGx or sham operation. Ang II was delivered by minipump (150 ng/kg per minute) for 14 days. CGx reduced AP independent of salt diet during control. CGx markedly attenuated Ang II hypertension in rats on 2% NaCl but had little effect in rats fed 0.4% NaCl. To test the possibility that CGx exerted its effects via renal denervation, rats were subjected to the same protocol but received selective bilateral renal denervation. Renal denervation decreased AP during control but had no protective effect on Ang II hypertension and actually tended to exacerbate the pressor response. Finally, separate groups of rats underwent CGx or sham operation and were instrumented to allow repeated measures of mean circulatory filling pressure, an index of venous tone. In addition to attenuating Ang II salt hypertension, CGx completely prevented Ang II salt-induced increases in mean circulatory filling pressure and substantially attenuated depressor responses to acute ganglion blockade. We conclude that, in the presence of high salt, Ang II activates the splanchnic sympathetic nervous system to increase venomotor tone and AP. Key Words: angiotensin II Ⅲ sympathetic nervous system Ⅲ splanchnic circulation Ⅲ venomotor tone Ⅲ renal denervation W e have shown recently, using repeated measures of mean circulatory filling pressure (MCFP) in conscious undisturbed rats, that chronic infusion of angiotensin II (Ang II), only when administered in combination with a high-salt diet, activates the sympathetic nervous system (SNS) to increase venomotor tone. 1 This increase in venomotor tone may contribute to the pathogenesis of Ang II salt hypertension by increasing central blood volume, resulting in a translocation of blood from the highly compliant venous system to the less compliant arterial circulation. 1 This redistribution of blood volume and the well-documented impairment of renal excretory function caused by Ang II 2 would be major factors in increasing arterial pressure (AP) in this model. [3][4][5] Splanchnic veins and venules account for most of the active capacitance responses in the circulation and are richly innervated by the SNS. 6 -8 In fact, it has been estimated that innervation to the nonhepatic splanchnic organs accounts for half of the total norepinephrine (NE) released in the entire body. 9 Therefore, our recent observations in Ang II salt hypertension of neurog...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.