The energy harvesting performance of a piezoelectric stack actuator under a shock event is theoretically and experimentally investigated. The first method is derived from the single degree of freedom constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is deriving the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulating it with the finite element method. Two experimental cases matched well with the model predictions where the percent errors were 3.90% and 3.26% for the SDOF analysis and 1.52% and 1.42% for the FEM.
Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh–Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.
The elastic instabilities associated with buckling in bistable structures have been harnessed toward energy-based and motion-based applications, with significant research toward energy harvesting and morphing. Often combined with smart materials, structural prototypes are designed with a single application in mind. Recently, a novel method of inducing bistability was proposed by bonding two piezoelectrically actuated macro fiber composites in a ½0 MFC =90 MFC T layup and releasing the voltage post cure to yield two cylindrically stable configurations. Since the macro fiber composites are simultaneously the actuator and host structure, the resulting efficiencies enable this bistable laminate to be multifunctional, with both broadband energy harvesting and snap-through morphing capabilities. This article experimentally characterizes the vibration-based energy harvesting performance of the laminate to enable morphing. Through frequency sweeps across the first two modes of both states, the laminate exhibits broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Besides single-well oscillations, snap-throughs are observed in intermittencies and subharmonic, chaotic, and limit cycle oscillations. The maximum power output of each regime and their charge durations of an energy harvesting module are assessed. The laminate's capabilities are then bridged by utilizing harvested energy in the charged module to initiate snap-through actuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.