The purpose of this paper is to establish a relation between a few measurable quantities (the socalled ζ potential, organic matter content, and shear rate) and the flocculation behavior of mud. The results obtained with small-scale flocculation experiments (mixing jar) are compared to results of large-scale experiments (settling column). The mud used for all experiments has been collected in October 2007 in the lower Western Schelde, near Antwerp, Belgium. From this study, it was found that the mean floc size and the Kolmogorov microscale vary in a similar way with the shear rate for suspensions with different pH and salt concentrations. The size of flocs at a given shear rate depends on the properties of the suspension, which affect the electrokinetic properties of the sediment; these can be described by means of the ζ potential. The main findings of this paper are: (1) In saline suspensions at pH = 8, the mean floc size increases when the salt concentration and the ζ potential increase. (2) For a given ζ potential, the mean floc size at low pH is larger than observed at pH = 8 for any added salt. (3) The mean floc size increases with increasing organic matter content. (4) Mud with no organic matter at pH = 8 and no added salt flocculates very little. The response of mud suspensions to variations in salinity and pH is similar to that of kaolinite. This suggests that a general trend can be established for different and complex types of clays and mud. This systematic study can therefore be used for further development of flocculation models.
Biologically active, fine‐grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud‐sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross‐stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.