Hematopoietic stem cells (HSCs) maintain tissue homeostasis by rapidly responding to environmental changes. Although this function is well understood, the molecular mechanisms governing this characteristic are largely unknown. We used a sequenced-based strategy to explore the role of both transcriptional and post-transcriptional regulation in HSC biology. We characterized the gene expression differences between HSCs, both quiescent and proliferating, and their differentiated progeny. This analysis revealed a large fraction of sequence tags aligned to intronic sequences, which we showed were derived from unspliced transcripts. A comparison of the biological properties of the observed spliced versus unspliced transcripts in HSCs showed that the unspliced transcripts were enriched in genes involved in DNA binding and RNA processing. In addition, levels of unspliced message decreased in a transcriptspecific fashion after HSC activation in vivo. This change in unspliced transcript level coordinated with increases in gene expression of splicing machinery components. Combined, these results suggest that post-transcriptional regulation is important in HSC activation in vivo. STEM CELLS 2006;24:662-670
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.