Capping TTFtt enables facile transmetalation in three different oxidation states.
Metal ligand cooperativity is a powerful strategy in transition metal chemistry. This type of mechanism for the activation of O 2 is best exemplified by heme centers in biological systems. While aerobic oxidations with Fe and Cu are well precedented, Ni-based oxidations are frequently less common due to less-accessible metal-based redox couples. Some Ni enzymes utilize special ligand environments for tuning the Ni(II)/(III) redox couple such as strongly donating thiolates in Ni superoxide dismutase. A recently characterized example of a Ni-containing protein, however, suggests an alternative strategy for mediating redox chemistry with Ni by utilizing ligand-based reducing equivalents to enable oxygen binding. While this mechanism has little synthetic precedent, we show here that Ni complexes of the redox-active ligand tBu,Tol DHP ( tBu,Tol DHP = 2,5-bis((2-tbutylhydrazono)(p-tolyl)methyl)-pyrrole) activate O 2 to generate a Ni(II) superoxo complex via ligand-based electron transfer. This superoxo complex is competent for stoichiometric oxidation chemistry with alcohols and hydrocarbons. This work demonstrates that coupling ligand-based redox chemistry with functionally redox-inactive Ni centers enables oxidative transformations more commonly mediated by metals such as Fe and Cu.
Organic diradicals are uncommon species that have been intensely studied for their unique properties and potential applicability in a diverse range of innovative fields. While there is a growing class of stable and well characterized organic diradicals, there has been recent focus on how diradical character can be controlled or modulated with external stimuli. Here we demonstrate that a diiron complex bridged by the doubly oxidized ligand tetrathiafulvalene-2,3,6,7tetrathiolate (TTFtt 2−) undergoes a thermally induced Fe-centered spin-crossover which yields significant diradical character on TTFtt 2−. UV-vis-Near-IR, Mössbauer, NMR, and EPR spectroscopies with magnetometry, crystallography, and advanced theoretical treatments suggest that this diradical character arises from a shrinking TTFtt 2− π-manifold from the Fe(II)-centered spin-crossover. The TTFtt 2− centered diradical is predicted to have a singlet ground state by theory and variable temperature EPR. This unusual phenomenon demonstrates that inorganic spin transitions can be used to modulate organic diradical character. Results and Discussion Synthesis and Structural Parameters Complex 1 was synthesized via reaction with the deprotected proligand 2,3,6,7-tetrakis(2cyanoethylthio)tetrathiafulvalene (TTFtt(C2H4CN)4) in good yield. Complex 1 was insoluble in all solvents we investigated which precluded detailed characterization but is pure as indicated by combustion analysis and behaves as a suitable synthon for subsequent chemistry. Complex 1 can be doubly oxidized with [Cp2Fe][BAr F 4] to form 2 which is more soluble, enabling common solution characterization including 1 H NMR and cyclic voltammetry measurements (Figure S1-S2). Oxidation from 1 to 2 could be ligandcentered (TTFtt 4− →TTFtt 2−), metal-centered (2 Fe(II)→2 Fe(III)), or some intermediate case, but the data acquired for 2 supports a TTFtt 2− structure arising from ligandcentered oxidation (Chart 1B, see below). Compound 2 was structurally characterized via singlecrystal X-ray diffraction (SXRD) at 293 K (2-HT; Figure S3) and 100 K (2-LT; Figure 1). In both structures TTFtt 2− is bridged between two TPA-capped Fe centers with two outer-sphere BAr F 4 − counter anions. The most striking difference between these temperatures is markedly longer Fe bond lengths in 2-HT. The Fe-Npyridine and Fe-Namine bond lengths in 2-LT are 1.958(6)-1.979(6) and 2.017(6) Å (Figure 1), respectively. These values are consistent with Fe-N bonds in other low-spin complexes with a Fe-TPA moiety. 16,17 In 2-HT, these bonds are 0.18-0.19 and 0.244(11) Å longer than their counterparts at 100 K, respectively, and are consistent with high-spin Fe-TPA complexes. The shorter Fe bonds at lower temperature indicate that 2 exhibits a temperature dependent spincrossover as observed in related compounds. 16,21
Biology employs exquisite control over proton, electron, H-atom, or H2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.