1980), the BBCH system (Lancashire et al., 1991), andHaun (1973). Zadoks et al. (1974) is an adaptation of The large area of rice (Oryza sativa L.) production worldwide is Feekes' (1941) scale (with 23 subdivisions) but further critical to the well being of large numbers of the world's people. Yet delineated. The IRRI (1980) scale is a 10-point system for rice, the most important single plant species for human nutrition, there is not a widely used growth staging system. Despite good points Paul A. Counce, University of Arkansas, Rice Research and Extensionrather than an arbitrary number (e.g., 10, 11, 99, or Center,
A 2.4-Å-resolution x-ray crystal structure of the carrier-protein independent halogenase, WelO5, in complex with its welwitindolinone precursor substrate, 12-epi-fischerindole U, reveals that the C13 chlorination target is proximal to the anticipated site of the oxo group in a presumptive cis-halo-oxo-iron(IV) (haloferryl) intermediate. Prior study of related halogenases forecasts substrate hydroxylation in this active-site configuration, but x-ray crystallographic verification of C13 halogenation in single crystals mandates that ligand dynamics must reposition the oxygen ligand to enable the observed outcome. Ser189Ala WelO5 effects a mixture of halogenation and hydroxylation products, showing that an outer sphere hydrogen bonding group orchestrates ligand movements to achieve a configuration that promotes halogen transfer.
N-nitroso-containing small molecules, such as the bacterial natural product streptozotocin, are prominent carcinogens 1,2 and important cancer chemotherapeutics 3,4 . Despite this functional group's significant impact on human health, dedicated enzymes involved in N-nitroso assembly have not been identified. Here, we describe a metalloenzyme from streptozotocin biosynthesis (SznF) that catalyzes an oxidative rearrangement of the guanidine group of N ω -methyl-L-arginine to generate an N-nitrosourea product. Structural characterization and mutagenesis of SznF uncovered two separate active sites that promote distinct steps in this transformation using different iron-containing metallocofactors. The discovery of this biosynthetic reaction, which has little precedent in enzymology or organic synthesis, expands the catalytic capabilities of non-heme iron-dependent enzymes to include N-N bond formation. We find biosynthetic gene clusters encoding SznF homologs are widely distributed among bacteria, including environmental organisms, plant symbionts, and human pathogens, suggesting an unexpectedly diverse and uncharacterized microbial reservoir of bioactive N-nitroso metabolites. Streptozotocin (SZN) (Zanosar®) is an N-nitrosourea natural product and approved cancer chemotherapeutic (Fig. 1a) 3,5 . SZN is also used to induce type I diabetes in animal models due to its toxicity towards pancreatic beta cells (> 28,500 PubMed references) 6 . Like other N-nitrosoureas, SZN exerts its activity in vivo by generating electrophilic DNA alkylating Reprints and permissions information is available at www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://
Hydroxylation of aliphatic carbons by nonheme Fe(IV)-oxo (ferryl) complexes proceeds by hydrogen-atom (H•) transfer (HAT) to the ferryl and subsequent coupling between the carbon radical and Fe(III)-coordinated oxygen (termed rebound). Enzymes that use H•-abstracting ferryl complexes for other transformations must either suppress rebound or further process hydroxylated intermediates. For olefin-installing C-C desaturations, it has been proposed that a second HAT to the Fe(III)-OH complex from the carbon α to the radical preempts rebound. Deuterium (H) at the second site should slow this step, potentially making rebound competitive. Desaturations mediated by two related l-arginine-modifying iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases behave oppositely in this key test, implicating different mechanisms. NapI, the l-Arg 4,5-desaturase from the naphthyridinomycin biosynthetic pathway, abstracts H• first from C5 but hydroxylates this site (leading to guanidine release) to the same modest extent whether C4 harbors H orH. By contrast, an unexpected 3,4-desaturation of l-homoarginine (l-hArg) by VioC, the l-Arg 3-hydroxylase from the viomycin biosynthetic pathway, is markedly disfavored relative to C4 hydroxylation when C3 (the second hydrogen donor) harbors H. Anchimeric assistance by N6 permits removal of the C4-H as a proton in the NapI reaction, but, with no such assistance possible in the VioC desaturation, a second HAT step (from C3) is required. The close proximity (≤3.5 Å) of both l-hArg carbons to the oxygen ligand in an X-ray crystal structure of VioC harboring a vanadium-based ferryl mimic supports and rationalizes the sequential-HAT mechanism. The results suggest that, although the sequential-HAT mechanism is feasible, its geometric requirements may make competing hydroxylation unavoidable, thus explaining the presence of α-heteroatoms in nearly all native substrates for Fe/2OG desaturases.
Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C–H and ferryl Fe–O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution x-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the L-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.