A simplifying treatment is developed for describing the molecular origins of electric dipole allowed sumfrequency generation (SFG) and second harmonic generation (SHG). The full sum-over-states expressions for the nonlinear polarizability simplify tremendously at or near resonance to straightforward formulas easily connected to intuitive molecular properties. For resonance enhancement at the sum or second harmonic frequency, the molecular nonlinear polarizability tensor is shown to be the direct product of the transition moment and the two-photon absorption (TPA) polarizability tensor. To our knowledge, this is the first rigorous mathematical demonstration indicating such a simple relationship directly connecting second harmonic generation with TPA, providing a link between the two fields of inquiry. Under resonance enhancement with one of the incident frequencies, the SFG and SHG nonlinear polarizability tensors similarly are given by the products of the transition moments and the anti-Stokes Raman polarizability tensors (a reasonably wellknown result for SFG). Under double-resonance conditions (i.e., resonant with one of the incident frequencies and the sum frequency), the two descriptions for the nonlinear polarizability become mathematically equivalent. Nonlinear optical character tables for both SHG and SFG under all resonance conditions have been compiled for chromophores of C s , C 2 , C 2V , and C 3V symmetries. Explicit evaluation of the corresponding orientational averages for each allowed transition in each character table assuming a uniaxial macroscopic orientation distribution reveals numerous relationships connecting the microscopic symmetry with the macroscopic nonlinear response. The approaches developed in this work are sufficiently general to allow their use in interpreting electronic, vibrational, and vibronic spectroscopic measurements by SHG and SFG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.