TRALI is the result of two clinical events, the first being a predisposing clinical condition and the second being the transfusion of biologically active lipids in stored blood.
PDK1 and PDK2 might be the same enzyme, the substrate specificity and activity of PDK1 being regulated through its interaction with another protein(s). PRK2 is a probable substrate for PDK1.
The ubiquitin proteasome system classically selects its substrates for degradation by tagging them with ubiquitin. Here, we describe another means of controlling proteasome function in a global manner. The 26S proteasome can be inhibited by modification with the enzyme, O-GlcNAc transferase (OGT). This reversible modification of the proteasome inhibits the proteolysis of the transcription factor Sp1 and a hydrophobic peptide through inhibition of the ATPase activity of 26S proteasomes. The Rpt2 ATPase in the mammalian proteasome 19S cap is modified by O-GlcNAc in vitro and in vivo and as its modification increases, proteasome function decreases. This mechanism may couple proteasomes to the general metabolic state of the cell. The O-GlcNAc modification of proteasomes may allow the organism to respond to its metabolic needs by controlling the availability of amino acids and regulatory proteins.
The regulatory and catalytic properties of the three mammalian isoforms of protein kinase B (PKB) have been compared. All three isoforms (PKBalpha, PKBbeta and PKBgamma) were phosphorylated at similar rates and activated to similar extents by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Phosphorylation and activation of each enzyme required the presence of PtdIns(3,4,5)P3 or PtdIns(3,4)P2, as well as PDK1. The activation of PKBbeta and PKBgamma by PDK1 was accompanied by the phosphorylation of the residues equivalent to Thr308 in PKBalpha, namely Thr309 (PKBbeta) and Thr305 (PKBgamma). PKBgamma which had been activated by PDK1 possessed a substrate specificity identical with that of PKBalpha and PKBbeta towards a range of peptides. The activation of PKBgamma and its phosphorylation at Thr305 was triggered by insulin-like growth factor-1 in 293 cells. Stimulation of rat adipocytes or rat hepatocytes with insulin induced the activation of PKBalpha and PKBbeta with similar kinetics. After stimulation of adipocytes, the activity of PKBbeta was twice that of PKBalpha, but in hepatocytes PKBalpha activity was four-fold higher than PKBbeta. Insulin induced the activation of PKBalpha in rat skeletal muscle in vivo, with little activation of PKBbeta. Insulin did not induce PKBgamma activity in adipocytes, hepatocytes or skeletal muscle, but PKBgamma was the major isoform activated by insulin in rat L6 myotubes (a skeletal-muscle cell line).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.