Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations.
Brain PET in small structures is challenged by low resolution inducing bias in the activity measurements. Improved spatial resolution may be obtained by using dedicated tomographs and more comprehensive modeling of the acquisition system during reconstruction. In this study, we assess the impact of resolution modeling (RM) during reconstruction on image quality and on the estimates of biologic parameters in a clinical study performed on a high-resolution research tomograph. Methods: An accelerated list-mode ordinary Poisson ordered-subset expectation maximization (OP-OSEM) algorithm, including sinogram-based corrections and an experimental stationary model of resolution, has been designed. Experimental phantom studies are used to assess contrast and noise characteristics of the reconstructed images. The binding potential of a selective tracer of the dopamine transporter is also assessed in anatomic volumes of interest in a 5-patient study. Results: In the phantom experiment, a slower convergence and a higher contrast recovery are observed for RM-OP-OSEM than for OP-OSEM for the same level of statistical noise. RM-OP-OSEM yields contrast recovery levels that could not be reached without RM as well as better visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images. Statistical noise has lower variance at the voxel level with RM than without at matched resolution. In a uniform activity region, RM induces higher positive and lower negative correlations with neighboring voxels, leading to lower spatial variance. Clinical images reconstructed with RM demonstrate better delineation of cortical and subcortical structures in both time-averaged and parametric images. The binding potential in the striatum is also increased, a result similar to the one observed in the phantom study. Conclusion: In high-resolution PET, RM during reconstruction improves quantitative accuracy by reducing the partial-volume effects.
Methodology for PET system modeling using imagespace techniques in the expectation maximization (EM) algorithm is presented. The approach, applicable to both list-mode data and projection data, is of particular significance to EM algorithm implementations which otherwise only use basic system models (such as those which calculate the system matrix elements on the fly). A basic version of the proposed technique can be implemented using image-space convolution, in order to include resolution effects into the system matrix, so that the EM algorithm gradually recovers the modeled resolution with each update. The improved system mod- eling (achieved by inclusion of two convolutions per iteration) results in both enhanced resolution and lower noise, and there is often no need for regularization-other than to limit the number of iterations. Tests have been performed with simulated list-mode data and also with measured projection data from a GE Advance PET scanner, for both [ 18 F]-FDG and [ 124 I]-NaI. The method demonstrates improved image quality in all cases when compared to the conventional FBP and EM methods presently used for clinical data (which do not include resolution modeling). The benefits of this approach for 124 I (which has a low positron yield and a large positron range, usually resulting in noisier and poorer resolution images) are particularly noticeable.Index Terms-Iterative image reconstruction, positron emission tomography (PET).
High-resolution three-dimensional (3-D) positron emission tomography (PET) scanners with high count rate performance, such as the quad-high density avalanche chamber (HIDAC), place new demands on image reconstruction algorithms due to the large quantities of high-precision list-mode data which are produced. Therefore, a reconstruction algorithm is required which can, in a practical time frame, reconstruct into very large image arrays (submillimeter voxels, which range over a large field of view) whilst preferably retaining the precision of the data. This work presents an algorithm which meets these demands: one-pass list-mode expectation maximization (OPL-EM) algorithm. The algorithm operates directly on list-mode data, passes through the data once only, accounts for finite resolution effects in the system model, and can also include regularization. The algorithm performs multiple image updates during its single pass through the list-mode data, corresponding to the number of subsets that the data have been split into. The algorithm has been assessed using list-mode data from a quad-HIDAC and is compared to the analytic reconstruction method 3-D reprojection (RP) with 3-D filtered backprojection.Index Terms-Iterative image reconstruction, list mode, positron emission tomography (PET).
Respiratory motion is a source of artefacts and reduced image quality in PET. Proposed methodology for correction of respiratory effects involves the use of gated frames, which are however of low signal-to-noise ratio. Therefore a method accounting for respiratory motion effects without affecting the statistical quality of the reconstructed images is necessary. We have implemented an affine transformation of list mode data for the correction of respiratory motion over the thorax. The study was performed using datasets of the NCAT phantom at different points throughout the respiratory cycle. List mode data based PET simulated frames were produced by combining the NCAT datasets with a Monte Carlo simulation. Transformation parameters accounting for respiratory motion were estimated according to an affine registration and were subsequently applied on the original list mode data. The corrected and uncorrected list mode datasets were subsequently reconstructed using the one-pass list mode EM (OPL-EM) algorithm. Comparison of corrected and uncorrected respiratory motion average frames suggests that an affine transformation in the list mode data prior to reconstruction can produce significant improvements in accounting for respiratory motion artefacts in the lungs and heart. However, the application of a common set of transformation parameters across the imaging field of view does not significantly correct the respiratory effects on organs such as the stomach, liver or spleen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.