The insufficient healing capacity of articular cartilage necessitates mechanically functional biologic tissue replacements. Using cells to form biomimetic cartilage implants is met with the challenges of cell scarcity and donor site morbidity, requiring expanded cells that possess the ability to generate robust neocartilage. To address this, this study assesses the effects of expansion medium supplementation (bFGF, TFP, FBS) and self-assembled construct seeding density (2, 3, 4 million cells/5 mm dia. construct) on the ability of costochondral cells to generate biochemically and biomechanically robust neocartilage. Results show TFP (1 ng/mL TGF-β1, 5 ng/mL bFGF, 10 ng/mL PDGF) supplementation of serum-free chondrogenic expansion medium enhances the post-expansion chondrogenic potential of costochondral cells, evidenced by increased glycosaminoglycan content, decreased type I/II collagen ratio, and enhanced compressive properties. Low density (2 million cells/construct) enhances matrix synthesis and tensile and compressive mechanical properties. Combined, TFP and Low density interact to further enhance construct properties. That is, with TFP, Low density increases type II collagen content by over 100%, tensile stiffness by over 300%, and compressive moduli by over 140%, compared with High density. In conclusion, the interaction of TFP and Low density seeding enhances construct material properties, allowing for a mechanically functional, biomimetic cartilage to be formed using clinically relevant costochondral cells.
Background Understanding structure-function relationships in the temporomandibular joint (TMJ) disc is a critical first step toward creating functional tissue replacements for the large population of patients suffering from TMJ disc disorders. While many of these relationships have been identified for the collagenous fraction of the disc, this same understanding is lacking for the next most abundant extracellular matrix component, sulfated glycosaminoglycans (GAGs). Though GAGs are known to play a major role in maintaining compressive integrity in GAG-rich tissues such as articular cartilage, their role in fibrocartilaginous tissues in which GAGs are much less abundant is not clearly defined. Therefore, this study investigates the contribution of GAGs to the regional viscoelastic compressive properties of the temporomandibular joint (TMJ) disc. Method of Approach Chondroitinase ABC (C-ABC) was used to deplete GAGs in five different disc regions, and the time course for >95% GAG removal was defined. The compressive properties of GAG depleted regional specimens were then compared to non-treated controls using an unconfined compression stress-relaxation test. Additionally, treated and non-treated specimens were assayed biochemically and histologically to confirm GAG removal. Results Compared to untreated controls, the only regions affected by GAG removal in terms of biomechanical properties were in the intermediate zone, the most GAG-rich portion of the disc. Without GAGs, all intermediate zone regions showed decreased tissue viscosity, and the intermediate zone lateral region also showed a 12.5% decrease in modulus of relaxation. However, in the anterior and posterior band regions no change in compressive properties was observed following GAG depletion, though these regions showed the highest compressive properties overall. Conclusions Although GAGs are not the major extracellular matrix molecule of the TMJ disc, they are responsible for some of the viscoelastic compressive properties of the tissue. Furthermore, the mechanical role of sulfated GAGs in the disc varies regionally in the tissue, and GAG abundance does not always correlate with higher compressive properties. Overall, this study found that sulfated GAGs are important to TMJ disc mechanics in the intermediate zone, an important finding for establishing design characteristics for future tissue engineering efforts.
Disorders of the soft tissues of the temporomandibular joint (TMJ), including the TMJ disc and cartilages, have elicited work in engineering tissue replacements; these must be able to function within the joint’s mechanically demanding environment. Such efforts are met with the challenges of 1) identifying a suitable source of donor cells and 2) expanding these cells while maintaining a phenotype that generates mechanically robust tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.