The miRNA transcriptome in the saliva of 56 African-Americans (AAs; 28 AD patients/28 controls) and 64 European-Americans (EAs; 32 AD patients/32 controls) was profiled using small RNA sequencing. Differentially expressed miRNAs were identified. Salivary miRNAs were used to predict the AD presence using machine learning with Random Forests. Results: Seven miRNAs were differentially expressed in AA AD patients, and five miRNAs were differentially expressed in EA AD patients. The AD prediction accuracy based on top five miRNAs (ranked by Gini index) was 79.1 and 72.2% in AAs and EAs, respectively.
Conclusion:This study provided the first evidence that salivary miRNAs are AD biomarkers.
Aim: This study aimed to investigate the function of genome-wide association study (GWAS)-identified variants associated with alcohol use disorder (AUD)/comorbid psychiatric disorders. Materials & methods: Genome-wide genotype, transcriptome and DNA methylome data were obtained from postmortem prefrontal cortex (PFC) of 48 Caucasians (24 AUD cases/24 controls). Expression/methylation quantitative trait loci (eQTL/mQTL) were identified and their enrichment in GWAS signals for the above disorders were analyzed. Results: PFC cis-eQTLs (923 from cases+controls, 27 from cases and 98 from controls) and cis-mQTLs (9,932 from cases+controls, 264 from cases and 695 from controls) were enriched in GWAS-identified genetic variants for the above disorders. Cis-eQTLs from AUD cases were mapped to morphine addiction-related genes. Conclusion: PFC cis-eQTLs/ cis-mQTLs influence gene expression/DNA methylation patterns, thus increasing the disease risk.
Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development.
Here, we report the isolation, identification, and whole-genome sequences of 12 bacterial strains associated with four mushroom species. The study was done as an inquiry-based exercise in an undergraduate genomics course (BIOL 340) in the Thomas H. Gosnell School of Life Sciences at the Rochester Institute of Technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.