Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality.
The synthesis of chiral polyoxometalates (POMs) is a challenge
because of the difficulty to induce the formation of intrinsically
chiral metal-oxo frameworks. Herein we report the stereoselective
synthesis of a series of gigantic chiral Mo Blue (MB) POM clusters 1–5 that are formed by exploiting the
synergy between coordinating lanthanides ions as symmetry breakers
to produce MBs with chiral frameworks decorated with amino acids ligands;
these promote the selective formation of enantiopure MBs. All the
compounds share the same framework archetype, based on {Mo124Ce4}, which forms an intrinsically chiral Δ or Λ
configurations, controlled by the configurations of functionalized
chiral amino acids. The chirality and stability of 1–5 in solution are confirmed by circular dichroism, 1H NMR, and electrospray ion mobility–mass spectrometry studies.
In addition, the framework of the {Mo124Ce4}
MB not only behaves as a host able to trap a chiral {Mo8} cluster that is not accessible by traditional synthesis but also
promotes the transformation of tryptophan to kynurenine in
situ. This work demonstrates the potential and applicability
of our synthetic strategy to produce gigantic chiral POM clusters
capable of host–guest chemistry and selective synthetic transformations.
General synthetic methods for the grafting of peptide chains onto polyoxometalate clusters by the use of general activated precursors have been developed. Using a solution-phase approach, pre-synthesized peptides can be grafted to a metal oxide cluster to produce hybrids of unprecedented scale (up to 30 residues). An adapted solid-phase method allows the incorporation of these clusters, which may be regarded as novel hybrid unnatural amino acids, during the peptide synthesis itself. These methods may open the way for the automated synthesis of peptides and perhaps even proteins that contain "inorganic" amino acids.
We describe the synthesis, structure, self-assembly, solution chemistry, and mass spectrometry of two new gigantic decameric molybdenum blue wheels, {Mo200Ce12} (1) and {Mo100Ce6} (2), by building block rearrangement of the tetradecameric {Mo154} framework archetype and control of the architecture's curvature in solution from the addition of Ce(III). The assembly of 1 and 2 could be directed accordingly by adjusting the ionic strength and acidity of the reaction mixture. Alternatively, the dimeric cluster {Mo200Ce12} could be transformed directly to the monomeric species {Mo100Ce6} upon addition of a potassium salt. ESI-ion mobility mass spectra were successfully obtained for both {Mo200Ce12} and {Mo100Ce6}, which is the first report in molybdenum blue chemistry thereby confirming that the gigantic clusters are stable in solution and that ion mobility measurements can be used to characterize nanoscale inorganic molecules.
Polyoxometalates (POMs) are discrete clusters of redox-active metal oxides, many of which can be linked to organic moieties. Here, we show how it is possible to link Mn Anderson POMs to terminal alkyne and azide groups and develop appropriate conditions for their Cu-catalyzed alkyne-azide cycloaddition (or "click" reaction). These coupling reactions are then used to link the clusters together, forming monodisperse linear Mn Anderson oligomers, here with examples ranging in size from two to five clusters. These oligomers are built up sequentially using a combination of mono- and difunctionalized clusters, giving an unprecedented level of control over the size and structure of the resulting hybrid POMs. This new synthetic methodology therefore opens the way for the synthesis of metal oxide hybrid oligomers and polymers by coupling control, minimizing side products, producing nanosized molecular hybrid organic-inorganic oxides ca. 4-9 nm in size, with molecular weights ranging 2-10 kDa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.