Amphibians and reptiles are sensitive to changes in the thermal environment, which varies considerably in human‐modified landscapes. Although it is known that thermal traits of species influence their distribution in modified landscapes, how herpetofauna respond specifically to shifts in ambient temperature along forest edges remains unclear. This may be because most studies focus on local‐scale metrics of edge exposure, which only account for a single edge or habitat patch. We predicted that accounting for the combined effect of multiple habitat edges in a landscape would best explain herpetofaunal response to thermally mediated edge effects. We (1) surveyed herpetofauna at two lowland, fragmented forest sites in central Colombia, (2) measured the critical thermal maximum (CTmax) of the species sampled, (3) measured their edge exposure at both local and landscape scales, and (4) created a thermal profile of the landscape itself. We found that species with low CTmax occurred both further from forest edges and in areas of denser vegetation, but were unaffected by the landscape‐scale configuration of habitat edges. Variation in the thermal landscape was driven primarily by changes in vegetation density. Our results suggest that amphibians and reptiles with low CTmax are limited by both canopy gaps and proximity to edge, making them especially vulnerable to human modification of tropical forest. Abstract in Spanish is available with online material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.