BackgroundBeta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Low-level resistant isolates with the N526K substitution (group II low-rPBP3) predominate in most geographical regions, while high-level resistant isolates with the additional S385T substitution (group III high-rPBP3) are common in Japan and South Korea.Knowledge about the molecular epidemiology of rPBP3 strains is limited. We combined multilocus sequence typing (MLST) and ftsI/PBP3 typing to study the emergence and spread of rPBP3 in nontypeable H. influenzae (NTHi) in Norway.ResultsThe prevalence of rPBP3 in a population of 795 eye, ear and respiratory isolates (99% NTHi) from 2007 was 15%. The prevalence of clinical PBP3-mediated resistance to ampicillin was 9%, compared to 2.5% three years earlier. Group II low-rPBP3 predominated (96%), with significant proportions of isolates non-susceptible to cefotaxime (6%) and meropenem (20%). Group III high-rPBP3 was identified for the first time in Northern Europe.Four MLST sequence types (ST) with characteristic, highly diverging ftsI alleles accounted for 61% of the rPBP3 isolates. The most prevalent substitution pattern (PBP3 type A) was present in 41% of rPBP3 isolates, mainly carried by ST367 and ST14. Several unrelated STs possessed identical copies of the ftsI allele encoding PBP3 type A.Infection sites, age groups, hospitalization rates and rPBP3 frequencies differed between STs and phylogenetic groups.ConclusionsThis study is the first to link ftsI alleles to STs in H. influenzae. The results indicate that horizontal gene transfer contributes to the emergence of rPBP3 by phylogeny restricted transformation.Clonally related virulent rPBP3 strains are widely disseminated and high-level resistant isolates emerge in new geographical regions, threatening current empiric antibiotic treatment. The need of continuous monitoring of beta-lactam susceptibility and a global system for molecular surveillance of rPBP3 strains is underlined. Combining MLST and ftsI/PBP3 typing is a powerful tool for this purpose.
Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.
We report the results of a study of the prevalence of Ehrlichia and Borrelia species in 341 questing Ixodes ricinus ticks from two locations in southern Norway. The prevalences of Borrelia burgdorferi sensu lato and Ehrlichia spp. were, respectively, 16 and 11.5% at site 1 and 17 and 6% at site 2. Prevalence and species composition of Borrelia and Ehrlichia varied with location and date of collection. The dominant Borrelia species at both sites was Borrelia afzelii, followed by Borrelia burgdorferi sensu stricto. Borrelia garinii was found in only a single tick. The dominant member of the Ehrlichia group was a recently described Ehrlichia-like organism related to the monocytic ehrlichiae. Variants of Ehrlichia phagocytophila and the agent of human granulocytic ehrlichiosis were also found. The highest prevalences for B. afzelii, B. burgdorferi sensu stricto, and the Ehrlichia-like organism were observed in May. B. afzelii was most prevalent in females, less prevalent in nymphs, and least prevalent in males, while the prevalence of Ehrlichia was highest in nymphs, lower in females, and least in males. Double infections with B. afzelii and B. burgdorferi sensu stricto and with B. afzelii and the Ehrlichia-like organism were significantly overrepresented. Tick densities were highest in May, when densities of more than 200 ticks/100 m 2 were observed, and declined during the summer months to densities as low as 20 ticks/100 m 2 . We conclude that estimates of the prevalence of tick-borne bacteria are sensitive to the choice of date and site for collection of ticks. This is the first study of tick-borne Borrelia and Ehrlichia in Norway and the lowest reported B. garinii prevalence in Northern Europe. The prevalence of the Ehrlichia-like organism is described for the first time in questing ticks.
The nucleotide sequences of the chromosomal dihydropteroate synthase (dhps) genes in sulfonamidesusceptible and sulfonamide-resistant strains of Neisseria meningitidis of serogroups A, B and C were determined. The molecular weights and the amino acid sequences showed similarity to those of all other known dihydropteroate synthase polypeptides. Sequence comparison of the N. meningitidis dhps genes indicated horizontal transfer of DNA segments rather than point mutations as the cause for resistance in meningococci. The dhps genes in three of four sulfonamide-resistant meningococci contained identical central regions of 424 bp. Compared with the corresponding genes in susceptible strains, each central region included an insert of 6 bp. In one of the sulfonamide-resistant strains, the dhps gene was similar to the corresponding genes in the sensitive strains in its NH2-terminal and C-terminal parts. Its central region, however, was identical to the corresponding regions of two of the other resistant genes, and thus it could be seen as a hybrid dhps gene. Transformation experiments and mapping of transformed dhps genes indicated the existence of a novel mechanism for the dissemination of sulfonamide resistance in N. meningitidis. The origin of the resistancemediating segment of the gene is unknown, but hybridization results showed the presence of homologous dhps genes in Neisseria gonorrhoeae and N. lactamica but not in N. subflava or Branhamella catarrhalis.
An intact episomal E2 gene is present in most cases of these cervical cancers, and could therefore replace the regulatory function of an integrated defective E2 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.