Summary
Satellite cells in skeletal muscle are a heterogeneous population of stem cells and committed progenitors. We found that quiescent satellite stem cells expressed the Wnt-receptor Fzd7, and that its candidate ligand Wnt7a was upregulated during regeneration. Notably, Wnt7a markedly stimulated the symmetric expansion of satellite stem cells but did not affect the growth or differentiation of myoblasts. Silencing of Fzd7 abrogated Wnt7a binding and stimulation of stem cell expansion. Wnt7a signaling induced the polarized distribution of the planar cell polarity effector Vangl2. Silencing of Vangl2 inhibited Wnt7a action on satellite stem cell expansion. Wnt7a overexpression enhanced muscle regeneration and increased both the number of satellite cells and the proportion of satellite stem cells. Muscle lacking Wnt7a exhibited a marked decrease in satellite cell number following regeneration. Therefore, Wnt7a signaling through the planar cell polarity pathway controls the homeostatic level of satellite stem cells and hence regulates the regenerative potential of muscle.
Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.CreERT2 | stem cell
SUMMARY
Pax3 and Pax7 regulate stem cell function in skeletal myogenesis. However, molecular insight into their distinct roles has remained elusive. Using gene expression data combined with genome wide binding-site analysis we show that both Pax3 and Pax7 bind identical DNA motifs and jointly activate a large panel of genes involved in muscle stem cell function. Surprisingly, in adult myoblasts Pax3 binds a subset (6.4%) of Pax7 targets. Despite a significant overlap in their transcriptional network, Pax7 regulates distinct panels of genes involved in the promotion of proliferation and inhibition of myogenic differentiation. We show that Pax7 has a higher binding affinity to the homeodomain-binding motif relative to Pax3, suggesting that intrinsic differences in DNA binding contribute to the observed functional difference between Pax3 and Pax7 binding in myogenesis. Together, our data demonstrates distinct attributes of Pax7 function and provides mechanistic insight into the non-redundancy of Pax3 and Pax7 in muscle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.