Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.
Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.
Airborne particulate matter (PM) exposure has been identified as a key environmental risk factor, associated especially with diseases of the respiratory and cardiovascular system and with almost 9 million premature deaths per year. Low-cost optical sensors for PM measurement are desirable for monitoring exposure closer to the personal level and particularly suited for developing spatiotemporally dense city sensor networks. However, questions remain over the accuracy and reliability of the data they produce, particularly regarding the influence of environmental parameters such as humidity and temperature, and with varying PM sources and concentration profiles. In this study, eight units each of five different models of commercially available low-cost optical PM sensors (40 individual sensors in total) were tested under controlled laboratory conditions, against higher-grade instruments for: lower limit of detection, response time, responses to sharp pollution spikes lasting <1 min, and the impact of differing humidity and PM source. All sensors detected the spikes generated with a varied range of performances depending on the model and presenting different sensitivity mainly to sources of pollution and to size distributions with a lesser impact of humidity. The sensitivity to particle size distribution indicates that the sensors may provide additional information to PM mass concentrations. It is concluded that improved performance in field monitoring campaigns, including tracking sources of pollution, could be achieved by using a combination of some of the different models to take advantage of the additional information made available by their differential response.
Microfluidic reagent-based nutrient sensors offer a promising technology to address the global undersampling of ocean chemistry but have so far not been shown to operate in the deep sea (>200 m). We report a new family of miniaturized lab-onchip (LOC) colorimetric analyzers making in situ nitrate and phosphate measurements from the surface ocean to the deep sea (>4800 m). This new technology gives users a new low-cost, highperformance tool for measuring chemistry in hyperbaric environments. Using a combination of laboratory verification and fieldbased tests, we demonstrate that the analyzers are capable of in situ measurements during profiling that are comparable to laboratorybased analyses. The sensors feature a novel and efficient inertialflow mixer that increases the mixing efficiency and reduces the back pressure and flushing time compared to a previously used serpentine mixing channel. Four separate replicate units of the nitrate and phosphate sensor were calibrated in the laboratory and showed an average limit of detection of 0.03 μM for nitrate and 0.016 μM for phosphate. Three on-chip optical absorption cell lengths provide a large linear range (to >750 μM (10.5 mg/L-N) for nitrate and >15 μM (0.47 mg/L-P) for phosphate), making the instruments suitable for typical concentrations in both ocean and freshwater aquatic environments. The LOC systems automatically collected a series of deep-sea nitrate and phosphate profiles in the northeast Atlantic while attached to a conductivity temperature depth (CTD) rosette, and the LOC nitrate sensor was attached to a PROVOR profiling float to conduct automated nitrate profiles in the Mediterranean Sea.
We introduce for the first time a new product line able to make high accuracy measurements of a number of water chemistry parameters in situ: i.e., submerged in the environment including in the deep sea (to 6,000 m). This product is based on the developments of in situ lab on chip technology at the National Oceanography Centre (NOC), and the University of Southampton and is produced under license by Clearwater Sensors Ltd., a start-up and industrial partner in bringing this technology to global availability and further developing its potential. The technology has already been deployed by the NOC, and with their partners worldwide over 200 times including to depths of ∼4,800 m, in turbid estuaries and rivers, and for up to a year in seasonally ice-covered regions of the arctic. The technology is capable of making accurate determinations of chemical and biological parameters that require reagents and which produce an electrical, absorbance, fluorescence, or luminescence signal. As such it is suitable for a wide range of environmental measurements. Whilst further parameters are in development across this partnership, Nitrate, Nitrite, Phosphate, Silicate, Iron, and pH sensors are currently available commercially. Theses sensors use microfluidics and optics combined in an optofluidic chip with electromechanical valves and pumps mounted upon it to mix water samples with reagents and measure the optical response. An overview of the sensors and the underlying components and technologies is given together with examples of deployments and integrations with observing platforms such as gliders, autonomous underwater vehicles and moorings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.