Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.
Highlights d IL6/STAT3 signaling drives metastasis in ER + breast cancer mouse models d IL6/STAT3 establishes shared ER-FOXA1-STAT3 enhancers independent of FOXA1 d STAT3 co-opts shared enhancers to drive a distinct gene program independent of ER d JAK inhibitor ruxolitinib represses IL6/STAT3 activity and in vivo invasion Authors
Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.
In this paper, we report on our "Iridis-Pi" cluster, which consists of 64 Raspberry Pi Model B nodes each equipped with a 700 MHz ARM processor, 256 MiB of RAM and a 16 GiB SD card for local storage. The cluster has a number of advantages which are not shared with conventional data-centre based cluster, including its low total power consumption, easy portability due to its small size and weight, affordability, and passive, ambient cooling. We propose that these attributes make Iridis-Pi ideally suited to educational applications, where it provides a low-cost starting point to inspire and enable students to understand and apply highperformance computing and data handling to tackle complex engineering and scientific challenges. We present the results of benchmarking both the computational power and network performance of the "Iridis-Pi." We also argue that such systems should be considered in some additional specialist application areas where these unique attributes may prove advantageous. We believe that the choice of an ARM CPU foreshadows a trend towards the increasing adoption of low-power, non-PC-compatible architectures in high performance clusters.
Fulvestrant is a novel endocrine therapy for breast cancer, with a unique structure and mode of action. It binds competitively to the oestrogen receptor (ER), with high affinity, and downregulates ER by functional blockade and increased turnover. Fulvestrant has reached the clinic via extensive pre-clinical and clinical trials, which demonstrated fulvestrant's unique characteristics and showed that they translate to equivalent or improved clinical efficacy compared to established endocrine agents. Fulvestrant is currently licensed for use in postmenopausal women with hormone receptor positive advanced breast cancer which has progressed on prior endocrine therapy. As a pure oestrogen antagonist, fulvestrant avoids the risk of detrimental side effects of selective ER modulators such as tamoxifen, which has partial agonist activity. Fulvestrant, the only parenteral agent in this setting, has a good side effect profile and is well tolerated. Due to its unique mode of action, fulvestrant lacks cross-resistance with existing agents. Fulvestrant is the subject of much ongoing research, which utilises knowledge of its novel mechanism and pharmacokinetic profile in order to optimise clinical efficacy and explore new roles, including first-line use in advanced breast cancer, use in combination with existing agents, in males, and in premenopausal women, and use as an adjuvant therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.