The mammalian target of rapamycin (mTOR) and Akt proteins regulate various steps of muscle development and growth, but the physiological relevance and the downstream effectors are under investigation. Here we show that S6 kinase 1 (S6K1), a protein kinase activated by nutrients and insulin-like growth factors (IGFs), is essential for the control of muscle cytoplasmic volume by Akt and mTOR. Deletion of S6K1 does not affect myoblast cell proliferation but reduces myoblast size to the same extent as that observed with mTOR inhibition by rapamycin. In the differentiated state, S6K1(-/-) myotubes have a normal number of nuclei but are smaller, and their hypertrophic response to IGF1, nutrients and membrane-targeted Akt is blunted. These growth defects reveal that mTOR requires distinct effectors for the control of muscle cell cycle and size, potentially opening new avenues of therapeutic intervention against neoplasia or muscle atrophy.
SummaryThe Mpk1 MAP kinase of the Saccharomyces cerevisiae cell wall integrity signalling pathway phosphorylates and activates the Rlm1 transcription factor in response to cell wall stress. Rlm1 is related to mammalian MEF2 isoforms, and shares a similar DNAbinding specificity. Signalling through Rlm1 regulates the expression of at least 25 genes, most of which have been implicated in cell wall biogenesis. We report here the transcriptional induction by agents of cell wall stress of a set of lacZ reporter plasmids derived from several Rlm1-responsive genes. Analysis of substitution mutations at putative Mpk1 phosphorylation sites within Rlm1 revealed that Ser427 and Thr439 are important for its stress-induced transcriptional activation of these reporter plasmids. Assessment of Rlm1 activation potency when fused to a heterologous DNA-binding domain showed that the identified seryl and threonyl residues are necessary for the Rlm1 transcriptional activation function independently of its DNA binding. We also demonstrate that a MAP kinase docking site, shown recently to mediate activation of MEF2A and MEF2C, is conserved in Rlm1 and is required for its ability to mediate transcriptional activation in response to agents that induce cell wall stress. Finally, intracellular localization analyses show that Rlm1 resides in the nucleus regardless of its activation and phosphorylation status. Together these observations support the inference that Mpk1 regulates the Rlm1 transcriptional activation function by phosphorylation of Ser427 and Thr439.
S6 kinase (S6K) deletion in metazoans causes small cell size, insulin hypersensitivity, and metabolic adaptations; however, the underlying molecular mechanisms are unclear. Here we show that S6K-deficient skeletal muscle cells have increased AMP and inorganic phosphate levels relative to ATP and phosphocreatine, causing AMP-activated protein kinase (AMPK) upregulation. Energy stress and muscle cell atrophy are specifically triggered by the S6K1 deletion, independent of S6K2 activity. Two known AMPK-dependent functions, mitochondrial biogenesis and fatty acid beta-oxidation, are upregulated in S6K-deficient muscle cells, leading to a sharp depletion of lipid content, while glycogen stores are spared. Strikingly, AMPK inhibition in S6K-deficient cells restores cell growth and sensitivity to nutrient signals. These data indicate that S6K1 controls the energy state of the cell and the AMPK-dependent metabolic program, providing a mechanism for cell mass accumulation under high-calorie diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.