A convenient Cu(I)-catalyzed cycloaddition of electron rich internal aryl alkynes and diazoacetates was discovered for the chemoselective and regioselective synthesis of tetra-substituted furans and cyclopropenes in moderate isolated yields (18-67%), and alkyne conversion (29-73%).
Copper(i) N-heterocyclic carbene (CuNHC) complexes are more catalytically active than traditional transition metal salts for the cyclopropenation of internal alkynylsilanes and diazoacetate compounds. A series of 1,2,3-trisubstituted and 1,2,3,3-tetrasubstituted cyclopropenylsilane compounds were isolated in good overall yields. An interesting regioselective and chemodivergent reaction pathway was also observed to furnish a tetra-substituted furan for an electron-rich donor/acceptor diazoacetate. Finally, a practical synthesis of a cyclopropenyl-containing starting material that is useful for bioorthogonal chemistry is also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.