The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single‐altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.
Neutral winds are a key factor in the dynamics of the ionosphere‐thermosphere system. Previous observations have shown that neutral and ion flows are strongly coupled during periods of auroral activity when ion drag forcing can become the dominant force driving neutral wind flow. This is primarily due to increases in ion density due to enhanced particle precipitation as well as associated increases the strength of the electric fields that drive ion motions. Due to this strong coupling, numerical simulations of neutral dynamics have difficulty reproducing neutral wind observations when they are driven by modeled precipitation and modeled convection. It is therefore desirable whenever possible to have concurrent coincident measurements of auroral precipitation and ion convection. Recent advancements in high‐resolution fitting of Super Dual Auroral Radar Network ion convection data have enabled the generation of steady maps of ion drifts over Alaska, coinciding with several optics sites. The Super Dual Auroral Radar Network measurements are compared with scanning Doppler imager neutral wind measurements at similar altitude, providing direct comparisons of ion and neutral velocities over a wide field and for long periods throughout the night. Also present are a digital all‐sky imager and a meridian spectrograph, both of which provide measurements of auroral intensity on several wavelengths. In this study, we combine these data sets to present three case studies that show significant correlation between increases in F region precipitation and enhancements in ion‐neutral coupling in the evening sector. We investigate the time scales over which the coupling takes place and compare our findings to previous measurements.
Frictional heating, frequently termed Joule heating, results from the difference in ion and neutral flows in the Earth's upper atmosphere and is a major energy sink for the coupled magnetosphere‐ionosphere‐thermosphere system. During disturbed geomagnetic conditions, energy input from the Earth's magnetosphere can strongly enhance ion velocities and densities, which will generally increase the rate of Joule heating. Previous theoretical and experimental studies have shown that small‐scale variations in Joule heating can be quite significant in the overall energy budget. In this study, we employ high‐resolution fitting of ion velocities obtained by Super Dual Auroral Radar Network (SuperDARN) coherent scatter, along with spatially resolved neutral wind data from the Poker Flat Scanning Doppler Imager, to examine the spatial and temporal structure of F region ion temperature enhancements, as well as changes in Joule heating rates due to the neutral wind. These results are compared to those obtained using Poker Flat Incoherent Scatter Radar in order to assess the validity of this analysis, with the objective of developing a method that can be applied to any current or future neutral measurements worldwide, thanks to the global coverage of SuperDARN. We examine the agreement between the ion temperatures predicted using the Scanning Doppler Imager‐SuperDARN method and the temperatures measured directly by Poker Flat Incoherent Scatter Radar and discuss possible reasons for any discrepancies. We observe significant spatial structure in both the ion temperature and Joule heating rates during periods of magnetic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.