Objective Hypertonic dextrose (HD) injections (prolotherapy) for osteoarthritis are reported to reduce pain. Cartilage regeneration is hypothesized as a mechanism. This in vitro study identifies an HD concentration that stimulates chondrogenic cells to increase metabolic activity and assesses whether this concentration affects collagen deposition and proliferation. Design ATDC5 chondrogenic cells were cultured in normoglycemic DMEM/F12 medium, treated with concentrations of HD (4-400 mM), and assessed with PrestoBlue. Advanced light microscopy was used to conduct live imaging of collagen deposition through second harmonic generation microscopy (SHG) and proliferation via 2-photon excitation microscopy. Proliferation was additionally assessed with hemocytometer counts. Results A linear regression model found that, relative to the 4 mM baseline control, cells treated with 200 mM had a higher mean absorbance ( P = 0.023) and cells treated with 250 mM were trending toward a higher mean absorbance ( P = 0.076). Polynomial regression interpolated 240 mM as producing the highest average absorbance. Hemocytometer counts validated 250 mM as stimulating proliferation compared with the 4 mM control ( P < 0.01). A concentration of 250 mM HD led to an increase in collagen deposition compared with that observed in control ( P < 0.05). This HD concentration also led to increases in proliferation of ATDC5 cells relative to that of control ( P < 0.001). Conclusions A 250 mM HD solution appears to be associated with increased metabolic activity of chondrocytes, increased collagen deposition, and increased chondrocyte proliferation. These results support clinical prolotherapy research suggesting that intra-articular HD joint injections reduce knee pain. Further study of HD and cellular processes is warranted.
Purpose Osteoarthritis (OA) is a prevalent, progressively degenerative disease. Researchers have rigorously documented clinical improvement in participants receiving prolotherapy for OA. The mechanism of action is unknown; therefore, basic science studies are required. One hypothesized mechanism is that prolotherapy stimulates tissue proliferation, including that of cartilage. Accordingly, this in vitro study examines whether the prolotherapy agent phenol-glycerin-glucose (P2G) is associated with upregulation of proliferation-enhancing cytokines, primarily fibroblast growth factor-2 (FGF-2). Methods Murine MC3T3-E1 cells were cultured in a nonconfluent state to retain an undifferentiated osteochondroprogenic status. A limitation of MC3T3-E1 cells is that they do not fully reproduce primary human chondrocyte phenotypes; however, they are useful for modeling cartilage regeneration in vitro due to their greater phenotypic stability than primary cells. Two experiments were conducted: one in duplicate and one in triplicate. Treatment consisted of phenol-glycerin-glucose (P2G, final concentration of 1.5%). The results were assessed by quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) to detect mRNA expression of the FGF-2, IGF-1, CCND-1 (Cyclin-D), TGF-β1, AKT, STAT1, and BMP2 genes. Results P2G - treated preosteoblasts expressed higher levels of FGF-2 than water controls (hour 24, p < 0.001; hour 30, p < 0.05; hour 38, p < 0.01). Additionally, CCND-1 upregulation was observed (p < 0.05), possibly as a cellular response to FGF-2 upregulation. Conclusions The prolotherapy agent P2G appears to be associated with upregulation of the cartilage cell proliferation enhancer cytokine FGF-2, suggesting an independent effect of P2G consistent with clinical evidence. Further study investigating the effect of prolotherapy agents on cellular proliferation and cartilage regeneration is warranted.
ContextDaily variations in bladder size and position can negatively impact the ability to accurately deliver radiation.AimsWe attempted to quantify how bladder volumes and positions change over the course of radiotherapy for muscle invasive bladder cancer and the planning target volume (PTV) margins required to account for such changes.Methods and materialCone-beam computed tomography (CT) images of 28 patients during their first, second, and third fractions and weekly thereafter were acquired. Bladders were contoured and the volume, centre of mass, and the maximal positions were recorded and compared to the planning CT scan.Statistical analysisBladder parameters were analysed using regression analysis examining for time trends and correlation to the patient, tumour, or treatment-related factors.ResultsThere was great variability in the mean bladder volumes during the radiotherapy courses (154.17 +/- 129.38 cm3). There were no statistically significant trends for volume changes. Deviations in bladder positions were seen but were small in magnitude. No patient factors were identified which could help predict bladder changes clinically. Bladder variability resulted in a high percentage of fractions (39.6%) in which part of the bladder was outside the PTV. Calculated PTV margins (for 90% of the population to receive 95% of the prescription dose) were 1.48 cm right, 1.15 cm left, 2.13 cm posterior, 1.52 cm anterior, 2.23 cm superior, and 0.52 cm inferior.ConclusionsBecause of random bladder changes, a significant number of fractions were treated in which the clinical target volume (CTV) fell outside of the PTV. Methods to minimize the amount of CTV that is missed on a fraction to fraction basis should be explored.
An amendment to this paper has been published and can be accessed via the original article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.