Potassium channels control the resting membrane potential and excitability of biological tissues. Many voltage-gated potassium channels are controlled through interactions with accessory subunits of the KCNE family through mechanisms still not known. Gating of mammalian channel KCNQ1 is dramatically regulated by KCNE subunits. We have found that multiple segments of the channel pore structure bind to the accessory protein KCNE1. The sites that confer KCNE1 binding are necessary for the functional interaction, and all sites must be present in the channel together for proper regulation by the accessory subunit. Specific gating control is localized to a single site of interaction between the ion channel and accessory subunit. Thus, direct physical interaction with the ion channel pore is the basis of KCNE1 regulation of K+ channels.
KCNEs are a family of genes encoding small integral membrane proteins whose role in governing voltagegated potassium channel gating is emerging. Whether each member of this homologous family interacts with channel proteins in the same manner is unknown; however, it is clear that the functional effect of each KCNE on channel gating is different. The specificity of KCNE1 (minK) and KCNE3 control of activation of the potassium channel KvLQT1 maps to a triplet of amino acids within the KCNE transmembrane domain by chimera analysis. We now define the structural determinants of functional specificity within this triplet.
Cardiac IKs, the slowly activated delayed-rectifier K+ current, is produced by the protein complex composed of α- and β-subunits: KvLQT1 and minK. Mutations of genes encoding KvLQT1 and minK are responsible for the hereditary long QT syndrome (loci LQT1 and LQT5, respectively). MinK-L51H fails to traffic to the cell surface, thereby failing to produce effective IKs. We examined the effects that minK-L51H and an endoplasmic reticulum (ER)-targeted minK (minK-ER) exerted over the electrophysiology and biosynthesis of coexpressed KvLQT1. Both minK-L51H and minK-ER were sequestered primarily in the ER as confirmed by lack of plasma membrane expression. Glycosylation and immunofluorescence patterns of minK-L51H were qualitatively different for minK-ER, suggesting differences in trafficking. Cotransfection with the minK mutants resulted in reduced surface expression of KvLQT1 as assayed by whole cell voltage clamp and immunofluorescence. MinK-L51H reduced current amplitude by 91% compared with wild-type (WT) minK/KvLQT1, and the residual current was identical to KvLQT1 without minK. The phenotype of minK-L51H on IKs was not dominant because coexpressed WT minK rescued the current and surface expression. Collectively, our data suggest that ER quality control prevents minK-L51H/KvLQT1 complexes from trafficking to the plasma membrane, resulting in decreased IKs. This is the first demonstration that a minK LQT mutation is capable of conferring trafficking defects onto its associated α-subunit.
Extrathoracic disease was more prevalent in WTC-related sarcoidosis than reported for patients with sarcoidosis without WTC exposure or for other exposure-related granulomatous diseases (beryllium disease and hypersensitivity pneumonitis). Cardiac involvement would have been missed if evaluation stopped after ECG, 48-h recordings, and echocardiogram. Our results also support the need for advanced cardiac screening in asymptomatic patients with strenuous, stressful, public safety occupations, given the potential fatality of a missed diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.