Skeletal muscle contains two populations of mitochondria that appear to be differentially affected by disease and exercise training. It remains unclear how these mitochondrial subpopulations contribute to fiber type-related and/or training-induced changes in fatty acid oxidation and regulation of carnitine palmitoyltransferase-1beta (CPT1beta), the enzyme that controls mitochondrial fatty acid uptake in skeletal muscle. To this end, we found that fatty acid oxidation rates were 8.9-fold higher in subsarcolemmal mitochondria (SS) and 5.3-fold higher in intermyofibrillar mitochondria (IMF) that were isolated from red gastrocnemius (RG) compared with white gastrocnemius (WG) muscle, respectively. Malonyl-CoA (10 muM), a potent inhibitor of CPT1beta, completely abolished fatty acid oxidation in SS and IMF mitochondria from WG, whereas oxidation rates in the corresponding fractions from RG were inhibited only 89% and 60%, respectively. Endurance training also elicited mitochondrial adaptations that resulted in enhanced fatty acid oxidation capacity. Ten weeks of treadmill running differentially increased palmitate oxidation rates 100% and 46% in SS and IMF mitochondria, respectively. In SS mitochondria, elevated fatty acid oxidation rates were accompanied by a 48% increase in citrate synthase activity but no change in CPT1 activity. Nonlinear regression analyses of mitochondrial fatty acid oxidation rates in the presence of 0-100 muM malonyl-CoA indicated that IC(50) values were neither dependent on mitochondrial subpopulation nor affected by exercise training. However, in IMF mitochondria, training reduced the Hill coefficient (P < 0.05), suggesting altered CPT1beta kinetics. These results demonstrate that endurance exercise provokes subpopulation-specific changes in mitochondrial function that are characterized by enhanced fatty acid oxidation and modified CPT1beta-malonyl-CoA dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.